Advertisement

Microchimica Acta

, 186:670 | Cite as

Recent progress in copper nanocluster-based fluorescent probing: a review

  • Taiping QingEmail author
  • Kaiwu Zhang
  • Zhihe Qing
  • Xuan Wang
  • Caicheng Long
  • Peng Zhang
  • Haizhi Hu
  • Bo FengEmail author
Review Article
  • 110 Downloads

Abstract

Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants.

Graphical abstract

Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.

Keywords

Metal nanoclusters Nanoprobe Fluorometry Bioimaging Environmental analysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21777135 and 51708475), the Natural Science Foundation of Hunan Province, China (2019JJ50596, 2019JJ40283, and 2018JJ3496), the Research Foundation of Education Bureau of Hunan Province (18C0102), and Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W (2018) Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 47:7140–7180PubMedCrossRefGoogle Scholar
  2. 2.
    Roma LP, Deponte M, Riemer J, Morgan B (2018) Mechanisms and applications of redox-sensitive green fluorescent protein-based hydrogen peroxide probes. Antioxid Redox Signal 29:552–568PubMedCrossRefGoogle Scholar
  3. 3.
    Schiffman JD, Balakrishna RG (2018) Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sensors Actuators B Chem 258:1191–1214CrossRefGoogle Scholar
  4. 4.
    Liu H, Li Z, Sun Y, Xin Geng HY, Meng H, Ge J, Qu L (2018) Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci Rep 8:1086–1093PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Cai Q, Li J, Ge J, Zhang L, Hu Y, Li Z, Qu L (2015) A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens Bioelectron 72:31–36PubMedCrossRefGoogle Scholar
  6. 6.
    Sun X, Sun J, Dong B, Huang G, Zhang L, Zhou W, Lv J, Zhang X, Liu M, Xu L, Bai X, Xu W, Yang Y, Song X, Song H (2019) Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials 201:42–52PubMedCrossRefGoogle Scholar
  7. 7.
    Tao Y, Li M, Ren J, Qu X (2015) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 44:8636–8663PubMedCrossRefGoogle Scholar
  8. 8.
    Bhattacharyya K, Mukherjee S (2017) Fluorescent metal nano-clusters as next generation fluorescent probes for cell imaging and drug delivery. B Chem Soc JPN 91:447–454CrossRefGoogle Scholar
  9. 9.
    Yu P, Wen X, Toh YR, Ma X, Tang J (2015) Fluorescent metallic nanoclusters: electron dynamics, structure, and applications. Part Part Syst Charact 32:142–163CrossRefGoogle Scholar
  10. 10.
    Hu X, Liu T, Zhuang Y, Li Y, Fan W, Huang Y (2016) Recent advances in the analytical applications of copper nanoclusters. Trends Anal Chem 77:66–75CrossRefGoogle Scholar
  11. 11.
    Chen Y, Phipps ML, Werner JH, Chakraborty S, Martinez JS (2018) DNA templated metal nanoclusters:from emergent properties to unique applications. Acc Chem Res 51:2756–2763CrossRefGoogle Scholar
  12. 12.
    Biswas S, Miller JT, Li Y, Nandakumar K, Kumar CSSR (2012) Developing a millifluidic platform for the synthesis of ultrasmall nanoclusters: ultrasmall copper nanoclusters as a case study. Small 8:688–698CrossRefGoogle Scholar
  13. 13.
    Guo Y, Cao F, Lei X, Mang L, Cheng S, Song J (2016) Fluorescent copper nanoparticles: recent advances in synthesis and applications for sensing metal ions. Nanoscale 8:4852–4863PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wang Z, Chen B, Rogach AL (2017) Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz 2:135–146CrossRefGoogle Scholar
  15. 15.
    Deng HH, Li KL, Zhuang QQ, Peng HP, Zhuang QQ, Liu AL, Xia XH, Chen W (2018) An ammonia-based etchant for attaining copper nanoclusters with green fluorescence emission. Nanoscale 10:6467–6473PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Xu Y, Sherwood J, Qin Y, Crowley D, Bonizzoni M, Bao Y (2014) The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 6:1515–1524PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Goswami N, Giri A, Bootharaju MS, Xavier PL, Pradeep T, Pa SK (2011) Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion. Anal Chem 83:9676–9680PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Wang C, Wang C, Xu L, Cheng H, Lin Q, Zhang C (2014) Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale 6:1775–1781PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Miao H, Zhong D, Zhou Z, Yang X (2015) Papain-templated Cu nanoclusters: assaying and exhibiting dramatic antibacterial activity cooperating with H2O2. Nanoscale 7:19066–11907PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ghosh R, Sahoo AK, Ghosh SS, Paul A, Chattopadhyay A (2014) Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling. ACS Appl Mater Interfaces 6:3822–3382PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Jin L, Zhang Z, Tang A, Li C, Shen Y (2016) Synthesis of yeast extract-stabilized Cu nanoclusters for sensitive fluorescent detection of sulfide ions in water. Biosens Bioelectron 79:108–113PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wang W, Leng F, Zhan L, Chang Y, Yang XX, Lan J, Huang CZ (2014) One-step prepared fluorescent copper nanoclusters for reversible pH-sensing. Analyst 139:2990–2993PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Qiao Y, Xu T, Zhang Y, Zhang C, Shi L, Zhang G, Shuang S, Dong C (2015) Green synthesis of fluorescent copper nanoclusters for reversible pH-sensors. Sensors Actuators B Chem 220:1064–1069CrossRefGoogle Scholar
  24. 24.
    Sang F, Zhang X, Shen F (2019) Fluorescent methionine-capped gold nanoclusters for ultra-sensitive determination of copper (II) and cobalt (II), and their use in a test strip. Microchim Acta 186:373CrossRefGoogle Scholar
  25. 25.
    Wang Y, Cui Y, Liu R, Wei Y, Jiang X, Zhu H, Gao L, Zhao Y, Chai Z, Gao X (2013) Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines. Chem Commun 49:10724–10726CrossRefGoogle Scholar
  26. 26.
    Huang H, Li H, Wang AJ, Zhong SX, Fang KM, Feng JJ (2014) Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging. Analyst 139:6536–6541PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Tang T, Ouyang J, Hu L, Guo L, Yang M, Chen X (2016) Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe (III) in human serum. Microchim Acta 183:2831–2836CrossRefGoogle Scholar
  28. 28.
    Rotaru A, Dutta S, Jentzsch E, Gothelf K, Mokhir A (2010) Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem Int Ed 49:5665–5667CrossRefGoogle Scholar
  29. 29.
    Qing T, Qing Z, Mao Z, He X, Xu F, Wen L, He D, Shi H, Wang K (2014) dsDNA-templated fluorescent copper nanoparticles: poly (AT-TA)-dependent formation. RSC Adv 4:61092–61095CrossRefGoogle Scholar
  30. 30.
    Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X (2013) Poly (thymine)-templated selective formation of fluorescent copper nanoparticles. Angew Chem Int Ed 52:9719–9722CrossRefGoogle Scholar
  31. 31.
    Vilar-Vidal N, Rivas J, Lopez-Quintela MA (2012) Size dependent catalytic activity of reusable subnanometer copper (0) clusters. ACS Catal 2:1693–1697CrossRefGoogle Scholar
  32. 32.
    Fernández-Ujados M, Trapiella-Alfonso L, Costa-Fernández JM, Pereiro R, Sanz-Medel A (2013) One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction. Nanotechnology 24:495601PubMedCrossRefGoogle Scholar
  33. 33.
    Ling Y, Zhang N, Qu F, Wen T, Gao ZF, Li NB, Luo HQ (2014) Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters. Spectrochim Acta A 118:315–320CrossRefGoogle Scholar
  34. 34.
    Feng J, Ju Y, Liu J, Zhang H, Chen X (2015) Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor. Anal Chim Acta 854:153–160PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Z, Susha AS, Chen B, Reckmeier C, Tomanec O, Zboril R, Zhong H, Rogach AL (2016) Poly (vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale 8:7197–7202PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang H, Huang X, Li L, Zhang G, Hussain I, Li Z, Tan B (2012) Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem Commun 48:567–569CrossRefGoogle Scholar
  37. 37.
    Wang C, Ling L, Yao Y, Song Q (2015) One-step synthesis of fluorescent smart thermo-responsive copper clusters: a potential nanothermometer in living cells. Nano Res 8:1975–1986CrossRefGoogle Scholar
  38. 38.
    Jalili R, Khataee A (2019) Aluminum (III) triggered aggregation-induced emission of glutathione-capped copper nanoclusters as a fluorescent probe for creatinine. Microchim Acta 186:29CrossRefGoogle Scholar
  39. 39.
    Wang C, Cheng H, Huang Y, Xu Z, Lin H, Zhang C (2015) Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells. Analyst 140:5634–5639PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Das NK, Ghosh S, Priya A, Datta S, Mukherjee S (2015) Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. J Phys Chem C 119:24657–24664CrossRefGoogle Scholar
  41. 41.
    Yang X, Feng Y, Zhu S, Luo Y, Zhuo Y, Dou Y (2014) One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution. Anal Chim Acta 847:49–54PubMedCrossRefGoogle Scholar
  42. 42.
    Cao H, Chen Z, Zheng H, Huang Y (2014) Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron 62:189–195PubMedCrossRefGoogle Scholar
  43. 43.
    Wu Z, Liu J, Gao Y, Liu H, Li T, Zou H, Wang Z, Zhang K, Wang Y, Zhang H, Yang B (2015) Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J Am Chem Soc 137:12906–12913PubMedCrossRefGoogle Scholar
  44. 44.
    Yuan X, Dou X, Zheng K, Xie J (2015) Recent advances in the synthesis and applications of ultrasmall bimetallic nanoclusters. Part Part Syst Charact 32:613–629CrossRefGoogle Scholar
  45. 45.
    Su YT, Lan GY, Chen WY, Chang HT (2010) Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal Chem 82:8566–8572PubMedCrossRefGoogle Scholar
  46. 46.
    Lan GY, Chen WY, Chang HT (2011) Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters. Analyst 136:3623–3628PubMedCrossRefGoogle Scholar
  47. 47.
    Yang J, Song N, Jia Q (2019) Electrostatically controlled fluorometric assay for differently charged biotargets based on the use of silver/copper bimetallic nanoclusters modified with polyethyleneimine and graphene oxide. Microchim Acta 186:70CrossRefGoogle Scholar
  48. 48.
    Nie F, Ga L, Ai J, Wang Y (2018) Synthesis of highly fluorescent Cu/Au bimetallic nanoclusters and their application in a temperature sensor and fluorescent probe for chromium (iii) ions. RSC Adv 8:13708–13713CrossRefGoogle Scholar
  49. 49.
    Chen PC, Ma JY, Chen LY, Lin GL, Shih CC, Lin TY, Chang HT (2014) Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts. Nanoscale 6:3503–3507PubMedCrossRefGoogle Scholar
  50. 50.
    Nerthigan Y, Sharma AK, Pandey S, Wu HF (2019) Cysteine capped copper/molybdenum bimetallic nanoclusters for fluorometric determination of methotrexate via the inner filter effect. Microchim Acta 186:130CrossRefGoogle Scholar
  51. 51.
    Ling Y, Wu JJ, Gao ZF, Li NB, Luo HQ (2015) Enhanced emission of polyethyleneimine-coated copper nanoclusters and their solvent effect. J Phys Chem C 119:27173–27177CrossRefGoogle Scholar
  52. 52.
    Jia X, Li J, Wang E (2013) Cu nanoclusters with aggregation induced emission enhancement. Small 9:3873–3879PubMedCrossRefGoogle Scholar
  53. 53.
    Goswami N, Yao Q, Luo Z, Li J, Chen T, Xie J (2016) Luminescent metal nanoclusters with aggregation-induced emission. J Phys Chem Lett 7:962–975PubMedCrossRefGoogle Scholar
  54. 54.
    Wang Z, Chen B, Susha AS, Wang W, Reckmeier CJ, Chen R, Zhong H, Rogach AL (2016) All-Copper Nanocluster Based Down-Conversion White Light-Emitting Devices. Adv Sci 3:1600182CrossRefGoogle Scholar
  55. 55.
    Wang Y, Cui Y, Liu R, Wei Y, Jiang X, Zhu H, Gao L, Zhao Y, Chai Z, Gao X (2013) Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines. Chem Commun 49:10724–10726CrossRefGoogle Scholar
  56. 56.
    Vilar-Vidal N, Rivas J, Lopez-Quintela MA (2012) Size dependent catalytic activity of reusable subnanometer copper(0) clusters. ACS Catal 2:1693–1697CrossRefGoogle Scholar
  57. 57.
    Ghosh S, Das NK, Anand U, Mukherjee S (2015) Photostable copper nanoclusters: compatible förster resonance energy-transfer assays and a nanothermometer. J Phys Chem Lett 6:1293–1298PubMedCrossRefGoogle Scholar
  58. 58.
    Zheng XJ, Liang RP, Li ZJ, Zhang L, Qiu JD (2016) One-step, stabilizer-free and green synthesis of Cu nanoclusters as fluorescent probes for sensitive and selective detection of nitrite ions. Sensors Actuators B Chem 230:314–319CrossRefGoogle Scholar
  59. 59.
    Kawasaki H, Kosaka Y, Myoujin Y, Narushima T, Yonezawa T, Arakawa R Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. Chem Commun 47:7740–7742PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou T, Xu W, Yao Q, Zhao T, Chen X (2015) Highly fluorescent copper nanoclusters as a probe for the determination of pH. Methods Appl fluores 3:044002CrossRefGoogle Scholar
  61. 61.
    Feng JJ, Huang H, Zhou DL, Cai LY, Tu QQ, Wang AJ (2013) Peptide-templated synthesis of wavelength-tunable fluorescent gold nanoparticles. J Mater Chem C 1:4720–4725CrossRefGoogle Scholar
  62. 62.
    Wang C, Shu S, Yao Y, Song Q (2015) A fluorescent biosensor of lysozyme-stabilized copper nanoclusters for the selective detection of glucose. RSC Adv 5:101599–101606CrossRefGoogle Scholar
  63. 63.
    Lin YJ, Chen PC, Yuan Z, Ma JY, Chang HT (2015) The isomeric effect of mercaptobenzoic acids on the preparation and fluorescence properties of copper nanoclusters. Chem Commun 51:11983–11986CrossRefGoogle Scholar
  64. 64.
    Ghosh R, Goswami U, Ghosh SS, Paul A (2014) A Chattopadhyay, Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS Appl Mater Interfaces 7:209–222PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Zhao T, He XW, Li WY, Zhang YK (2015) Transferrin-directed preparation of red-emitting copper nanoclusters for targeted imaging of transferrin receptor over-expressed cancer cells. J Mater Chem B 3:2388–2394CrossRefGoogle Scholar
  66. 66.
    Zhou Z, Du Y, Dong S (2011) Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label-free aptamer sensor. Anal Chem 83:5122–5127PubMedCrossRefGoogle Scholar
  67. 67.
    Wang YM, Liu JW, Duan LY, Liu SJ, Jiang JH (2017) Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Microchim Acta 184:4183–4188CrossRefGoogle Scholar
  68. 68.
    Song Q, Wang R, Sun F, Chen H, Wang Z, Na N, Ouyang J (2017) A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles. Biosens Bioelectron 87:760–763PubMedCrossRefGoogle Scholar
  69. 69.
    Zhou T, Yao Q, Zhao T, Chen X (2015) One-pot synthesis of fluorescent DHLA-stabilized Cu nanoclusters for the determination of H2O2. Talanta 141:80–85PubMedCrossRefGoogle Scholar
  70. 70.
    Mao Z, Qing Z, Qing T, Xu F, Wen L, He X, He D, Shi H, Wang K (2015) Poly (thymine)-templated copper nanoparticles as a fluorescent indicator for hydrogen peroxide and oxidase-based biosensing. Anal Chem 87:7454–7460PubMedCrossRefGoogle Scholar
  71. 71.
    Wang HB, Zhang HD, Chen Y, Liu YM (2015) A fluorescent biosensor for protein detection based on poly (thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens Bioelectron 74:581–586PubMedCrossRefGoogle Scholar
  72. 72.
    Wang Y, Chen T, Zhang Z, Ni Y (2018) Cytidine-stabilized copper nanoclusters as a fluorescent probe for sensing of copper ions and hemin. RSC Adv 8:9057–9062CrossRefGoogle Scholar
  73. 73.
    Hu Y, Wu Y, Chen T, Chu X, Yu R (2013) Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols. Anal Methods 5:3577–3581CrossRefGoogle Scholar
  74. 74.
    Zhang L, Cai QY, Li J, Ge J, Wang JY, Dong ZZ, Li ZH (2015) A label-free method for detecting biothiols based on poly (thymine)-templated copper nanoparticles. Biosens Bioelectron 69:77–82PubMedCrossRefGoogle Scholar
  75. 75.
    Wang HB, Zhang HD, Chen Y, Huang KJ, Liu YM (2015) A label-free and ultrasensitive fluorescent sensor for dopamine detection based on double-stranded DNA templated copper nanoparticles. Sensors Actuators B Chem 220:146–153CrossRefGoogle Scholar
  76. 76.
    Wang HB, Zhang HD, Chen Y, Li Y, Gan T (2015) H2O2-mediated fluorescence quenching of double-stranded DNA templated copper nanoparticles for label-free and sensitive detection of glucose. RSC Adv 5:77906–77912CrossRefGoogle Scholar
  77. 77.
    Gou S, Shi Y, Li P, Wang H, Li T, Zhuang X, Li W, Wang Z (2019) Stimuli-responsive luminescent copper nanoclusters in alginate and their sensing ability for glucose. ACS Appl Mater Interfaces 11:6561–6567PubMedCrossRefGoogle Scholar
  78. 78.
    Rao H, Ge H, Lu Z, Liu W, Chen Z, Zhang Z, Wang X, Zou P, Wang Y (2016) Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid. Microchim Acta 183:1651–1657CrossRefGoogle Scholar
  79. 79.
    Patel R, Bothra S, Kumar R, Crisponi G, Sahoo SK (2018) Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips. Biosens Bioelectron 102:196–203PubMedCrossRefGoogle Scholar
  80. 80.
    Li XG, Zhang F, Gao Y, Zhou QM, Zhao Y, Li Y, Huo JZ, Zhao XJ (2016) Facile, synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens Bioelectron 86:270–276PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Huang Y, Feng H, Liu W, Zhou Y, Tang C, Ao H, Zhao M, Chen G, Chen J, Qian Z (2016) Luminescent aggregated copper nanoclusters nanoswitch controlled by hydrophobic interaction for real-time monitoring of acid phosphatase activity. Anal Chem 88:11575–11583PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Huang Y, Feng H, Liu W, Zhang S, Tang C, Chen J, Qian Z (2017) Cation-driven luminescent self-assembled dots of copper nanoclusters with aggregation-induced emission for β-galactosidase activity monitoring. J Mater Chem B 5:5120–5127CrossRefGoogle Scholar
  83. 83.
    Wang M, Wang L, Liu Q, Su X (2018) A fluorescence sensor for protein kinase activity detection based on gold nanoparticles/copper nanoclusters system. Sensors Actuators B Chem 256:691–698CrossRefGoogle Scholar
  84. 84.
    Liu Q, Lai Q, Li N, Su X (2018) Copper nanoclusters capped with tannic acid as a fluorescent probe for real-time determination of the activity of pyrophosphatase. Microchim Acta 185:182CrossRefGoogle Scholar
  85. 85.
    Qing Z, He X, Qing T, Wang K, Shi H, He D, Zou Z, Yan L, Xu F, Ye X, Mao Z (2013) Poly (thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free nuclease assay and its inhibitors screening. Anal Chem 85:12138–12143PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Zhang L, Zhao J, Duan M, Zhang H, Jiang J, Yu R (2013) Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. Anal Chem 85:3797–3801PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zhang L, Zhao J, Zhang H, Jiang J, Yu R (2013) Double strand DNA-templated copper nanoparticle as a novel fluorescence indicator for label-free detection of polynucleotide kinase activity. Biosens Bioelectron 44:6–9PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Zhao H, Dong J, Zhou F, Li B (2017) One facile fluorescence strategy for sensitive detection of endonuclease activity using DNA-templated copper nanoclusters as signal indicators. Sensors Actuators B Chem 238:828–833CrossRefGoogle Scholar
  89. 89.
    Yin J, Liu F, Fan T, Ren Y, Jiang Y (2018) Rapid detection of methyltransferases utilizing dumbbell DNA-templated copper nanoparticles. Sensors Actuators B Chem 276:499–506CrossRefGoogle Scholar
  90. 90.
    Qing T, Long C, Wang X, Zhang K, Zhang P, Feng B (2019) Detection of micrococcal nuclease for identifying Staphylococcus aureus based on DNA templated fluorescent copper nanoclusters. Microchim Acta 186:248CrossRefGoogle Scholar
  91. 91.
    Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B (2017) Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically generated DNA as template. Microchim Acta 184:773CrossRefGoogle Scholar
  92. 92.
    Cao M, Jin Y, Li B (2016) Simple and sensitive detection of uracil-DNA glycosylase activity using dsDNA-templated copper nanoclusters as fluorescent probes. Anal Methods 8:4319–4323CrossRefGoogle Scholar
  93. 93.
    Ou LJ, Li XY, Li LJ, Liu HW, Sun AM, Liu KJ (2015) A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes. Analyst 140:1871–1875PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Hu Y, He Y, Han Y, Ge Y, Song G, Zhou J (2018) Poly (styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin. Microchim Acta 185:383CrossRefGoogle Scholar
  95. 95.
    Xiong Y, Gao B, Wu K, Wu Y, Chai Y, Huang X, Xiong Y (2018) Fluorescence immunoassay based on the enzyme cleaving ss-DNA to regulate the synthesis of histone-ds-poly (AT) templated copper nanoparticles. Nanoscale 10:19890–19897PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Song Q, Yang L, Chen H, Zhang R, Na N, Ouyang J (2017) A label-free fluorometric assay for actin detection based on enzyme-responsive DNA-templated copper nanoparticles. Talanta 174:444–447PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Wang XP, Yin BC, Ye BC (2013) A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs. RSC Adv 3:8633–8636CrossRefGoogle Scholar
  98. 98.
    Borghei YS, Hosseini M, Ganjali MR (2017) Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta 184:2671CrossRefGoogle Scholar
  99. 99.
    Xu F, Shi H, He X, Wang K, He D, Guo Q, Qing Z, Yan L, Ye X, Li D, Tang J (2014) Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA detection. Anal Chem 86:6976–6982PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Qing Z, Qing T, Mao Z, He X, Wang K, Zou Z, Shi H, He D (2014) dsDNA-specific fluorescent copper nanoparticles as a “green” nano-dye for polymerization-mediated biochemical analysis. Chem Commun 50:12746–12748CrossRefGoogle Scholar
  101. 101.
    Ge J, Dong Z, Zhang L, Cai Q, Bai D, Li Z (2016) Label-free biosensor based on dsDNA-templated copper nanoparticles for highly sensitive and selective detection of NAD+. RSC Adv 6:91077–91082CrossRefGoogle Scholar
  102. 102.
    Zhou S, Zhang L, Cai Q, Dong Z, Geng X, Ge J, Li Z (2016) A facile label-free aptasensor for detecting ATP based on fluorescence enhancement of poly(thymine)-templated copper nanoparticles. Anal Bioanal Chem 408:6711–6717PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ge J, Zhang L, Dong Z, Cai Q, Li Z (2016) Sensitive and label-free T4 polynucleotide kinase/phosphatase detection based on poly(thymine)-templated copper nanoparticles coupled with nicking enzyme-assisted signal amplification. Anal Methods 8:2831–2836CrossRefGoogle Scholar
  104. 104.
    Dong Z, Zhang L, Qiao M, Ge J, Liu A, Li Z (2016) A label-free assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on poly(thymine)-templated copper nanoparticles. Talanta 146:253–258PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Wang HB, Li Y, Chen Y, Zhang ZP, Gan T, Liu YM (2018) Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes. Microchim Acta 185:102CrossRefGoogle Scholar
  106. 106.
    Qing T, He X, He D, Ye X, Shangguan J, Liu J, Yuan B, Wang K (2017) Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair. Biosens Bioelectron 94:456–463PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Zhang X, Liu Q, Jin Y, Li B (2019) Determination of the activity of T4 polynucleotide kinase phosphatase by exploiting the sequence-dependent fluorescence of DNA-templated copper nanoclusters. Microchim Acta 186:3CrossRefGoogle Scholar
  108. 108.
    Ge J, Dong Z, Bai D, Zhang L, Hu Y, Ji D, Li Z (2017) A novel label-free fluorescent molecular beacon for the detection of 3'-5' exonuclease enzymatic activity by using DNA-templated copper nanoclusters. New J Chem 41:9718–9723CrossRefGoogle Scholar
  109. 109.
    Hu Y, He Y, Han Y, Ge Y, Song G, Zhou J (2019) Determination of the activity of alkaline phosphatase based on aggregation-induced quenching of the fluorescence of copper nanoclusters. Microchim Acta 186:5CrossRefGoogle Scholar
  110. 110.
    Chen M, Khusbu FY, Ma C, Wu K, Zhao H, Chen H, Wang K (2018) A sensitive detection method of carcinoembryonic antigen based on dsDNA-templated copper nanoparticles. New J Chem 42:13702–13707CrossRefGoogle Scholar
  111. 111.
    Jia X, Li J, Han L, Ren J, Yang X, Wang E (2012) DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 6:3311–3317PubMedCrossRefGoogle Scholar
  112. 112.
    Wang Y, Chen T, Zhuang Q, Ni Y (2017) One-pot aqueous synthesis of nucleoside-templated fluorescent copper nanoclusters and their application for discrimination of nucleosides. ACS Appl Mater Interfaces 9:32135–32141PubMedCrossRefGoogle Scholar
  113. 113.
    Li X, Li R, Long X, Li Z (2015) Ultra sensitive and wide-range pH sensor based on the BSA-capped Cu nanoclusters fabricated by fast synthesis through the use of hydrogen peroxide additive. RSC Adv 5:48835–48841CrossRefGoogle Scholar
  114. 114.
    Wang C, Yao Y, Song Q (2016) Interfacial synthesis of polyethyleneimine-protected copper nanoclusters: size-dependent tunable photoluminescence, pH sensor and bioimaging. Colloids Surf B 140:373–381CrossRefGoogle Scholar
  115. 115.
    Qing Z, Bai A, Xing S, Zou Z, He X, Wang K, Yang R (2019) Progress in biosensor based on DNA-templated copper nanoparticles. Biosens Bioelectron 137:96–109PubMedCrossRefGoogle Scholar
  116. 116.
    Heo GS, Zhao Y, Sultan D, Zhang X, Detering L et al (2019) Assessment of copper nanoclusters for accurate in vivo tumor imaging and potential for translation. ACS Appl Mater Interfaces 11:19669–19678PubMedCrossRefGoogle Scholar
  117. 117.
    Cao H, Chen Z, Zheng H, Huang Y (2014) Copper nanoclusters as a highly sensitive and selective fluorescence sensor for ferric ions in serum and living cells by imaging. Biosens Bioelectron 62:189–195PubMedCrossRefGoogle Scholar
  118. 118.
    Das NK, Ghosh S, Priya A, Datta S, Mukherjee S (2015) Luminescent copper nanoclusters as a specific cell-imaging probe and a selective metal ion sensor. J Phys Chem C 119:24657–24664CrossRefGoogle Scholar
  119. 119.
    Xia JM, Wei X, Chen XW, Shu Y, Wang JH (2018) Folic acid modified copper nanoclusters for fluorescent imaging of cancer cells with over-expressed folate receptor. Microchim Acta 185:205CrossRefGoogle Scholar
  120. 120.
    Ghosh R, Sahoo AK, Ghosh SS, Paul A, Chattopadhyay A (2014) Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling. ACS Appl Mater Interfaces 6:3822–3828PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Huang H, Li H, Wang AJ, Zhong SX, Fang KM, Feng JJ (2014) Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging. Analyst 139:6536–6541PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Wang C, Wang C, Xu L, Cheng H, Lin Q, Zhang C (2014) Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanoscale 6:1775–1781PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Ghosh R, Goswami U, Ghosh SS, Paul A, Chattopadhyay A (2014) Synergistic anticancer activity of fluorescent copper nanoclusters and cisplatin delivered through a hydrogel nanocarrier. ACS Appl Mater Interfaces 7:209–222PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Wang C, Cheng H, Huang Y, Xu Z, Lin H, Zhang C (2015) Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells. Analyst 140:5634–5639PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Lin L, Hu Y, Zhang L, Huang Y, Zhao S (2017) Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters. Biosens Bioelectron 94:523–529PubMedCrossRefGoogle Scholar
  126. 126.
    Wang C, Ling L, Yao Y, Song Q (2015) One-step synthesis of fluorescent smart thermo-responsive copper clusters: a potential nanothermometer in living cells. Nano Res 8:1975–1986CrossRefGoogle Scholar
  127. 127.
    Dutta A, Goswami U, Chattopadhyay A (2018) Probing cancer cells through intracellular aggregation-induced emission kinetic rate of copper nanoclusters. ACS Appl Mater Interfaces 10:19459–19472PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Barthel MJ, Angeloni I, Petrelli A, Avellini T, Scarpellini A, Bertoni G, Armirotti A, Moreels I, Pellegrino T (2015) Synthesis of highly fluorescent copper clusters using living polymer chains as combined reducing agents and ligands. ACS Nano 9:11886–11897PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Zhao T, He XW, Li WY, Zhang YK (2015) Transferrin-directed preparation of red-emitting copper nanoclusters for targeted imaging of transferrin receptor over-expressed cancer cells. J Mater Chem B 3:2388–2394CrossRefGoogle Scholar
  130. 130.
    Ghosh SK, Rahman DS, Ali AL, Kalita A (2013) Surface plasmon tunability and emission sensitivity of ultrasmall fluorescent copper nanoclusters. Plasmonics 8:1457–1468CrossRefGoogle Scholar
  131. 131.
    Bhamore JR, Deshmukh B, Haran V, Jha S, Singhal RK, Lenka N, Kailasa SK, Murthy ZVP (2018) One-step eco-friendly approach for the fabrication of synergistically engineered fluorescent copper nanoclusters: sensing of Hg2+ ion and cellular uptake and bioimaging properties. New J Chem 42:1510–1520CrossRefGoogle Scholar
  132. 132.
    Li J, Fu W, Bao J, Wang Z, Dai Z (2018) Fluorescence regulation of copper nanoclusters via DNA template manipulation toward design of a high signal-to-noise ratio biosensor. ACS Appl Mater Interfaces 10:6965–6971PubMedCrossRefGoogle Scholar
  133. 133.
    Chen J, Liu J, Fang Z, Zeng L (2012) Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem Commun 48:1057–1059CrossRefGoogle Scholar
  134. 134.
    Ou LJ, Li XY, Liu HW, Lu LJ, Chu X (2014) Poly (thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free detection of Pb2+ ion. Anal Sci 30:723–727PubMedCrossRefGoogle Scholar
  135. 135.
    Liu ZC, Qi JW, Hu C, Zhang L, Song W, Liang RP, Qiu JD (2015) Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Anal Chim Acta 895:95–103PubMedCrossRefGoogle Scholar
  136. 136.
    Li D, Li B, Yang SI (2015) A selective fluorescence turn-on sensing system for evaluation of Cu2+ polluted water based on ultra-fast formation of fluorescent copper nanoclusters. Anal Methods 7:2278–2282CrossRefGoogle Scholar
  137. 137.
    Qing Z, Zhu L, Yang S, Cao Z, He X, Wang K, Yang R (2016) In situ formation of fluorescent copper nanoparticles for ultrafast zero-background Cu2+ detection and its toxicides screening. Biosens Bioelectron 78:471–476PubMedCrossRefGoogle Scholar
  138. 138.
    Feng J, Ju Y, Liu J, Zhang H, Chen X (2015) Polyethyleneimine-templated copper nanoclusters via ascorbic acid reduction approach as ferric ion sensor. Anal Chim Acta 854:153–160PubMedCrossRefGoogle Scholar
  139. 139.
    Huang H, Li H, Feng JJ, Feng H, Wang AJ, Qian Z (2017) One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+sensing. Sensors Actuators B Chem 241:292–297CrossRefGoogle Scholar
  140. 140.
    Hu X, Mao X, Zhang X, Huang Y (2017) One-step synthesis of orange fluorescent copper nanoclusters for sensitive and selective sensing of Al3+ ions in food samples. Sensors Actuators B Chem 247:312–318CrossRefGoogle Scholar
  141. 141.
    Boonmee C, Promarak V, Tuntulani T, Ngeontae W (2018) Cysteamine-capped copper nanoclusters as a highly selective turn-on fluorescent assay for the detection of aluminum ions. Talanta 178:796–804PubMedCrossRefGoogle Scholar
  142. 142.
    Lin L, Hu Y, Zhang L, Huang Y, Zhao S (2017) Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters. Biosens Bioelectron 94:523–529PubMedCrossRefGoogle Scholar
  143. 143.
    Han B, Xiang R, Hou X, Yu M, Peng T, Li Y, He G (2017) One-step rapid synthesis of single thymine-templated fluorescent copper nanoclusters for “turn on” detection of Mn2+. Anal Methods 9:2590–2595CrossRefGoogle Scholar
  144. 144.
    Singh A, Kaur S, Kaur A, Aree T, Kaur N, Singh N, Bakshi MS (2014) Aqueous-phase synthesis of copper nanoparticles using organic nanoparticles: Application of assembly in detection of Cr3+. ACS Sustain Chem Eng 2:982–990CrossRefGoogle Scholar
  145. 145.
    Cui M, Song G, Wang C, Song Q (2015) Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). Microchim Acta 182:1371CrossRefGoogle Scholar
  146. 146.
    Liu J, Chen J, Fang Z, Zeng L (2012) A simple and sensitive sensor for rapid detection of sulfide anions using DNA-templated copper nanoparticles as fluorescent probes. Analyst 137:5502–5505PubMedCrossRefGoogle Scholar
  147. 147.
    Li Z, Guo S, Lu C (2015) A highly selective fluorescent probe for sulfide ions based on aggregation of Cu nanocluster induced emission enhancement. Analyst 140:2719–2725PubMedCrossRefGoogle Scholar
  148. 148.
    Chen Z, Niu Y, Cheng G, Tong L, Zhang G, Cai F, Chen T, Liu B, Tang B (2017) A fast, highly sensitive and selective assay of iodide ions with single-stranded DNA-templated copper nanoparticles as a fluorescent probe for its application in Kunming mice samples. Analyst 142:2781–2785PubMedCrossRefGoogle Scholar
  149. 149.
    Tang Q, Yang T, Huang Y (2015) Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta 182:2337CrossRefGoogle Scholar
  150. 150.
    Cao H, Chen Z, Huang Y (2015) Copper nanocluster coupling europium as an off-to-on fluorescence probe for the determination of phosphate ion in water samples. Talanta 143:450–456PubMedCrossRefGoogle Scholar
  151. 151.
    Lin YJ, Chen PC, Yuan Z, Ma JY, Chang HT (2015) The isomeric effect of mercaptobenzoic acids on the preparation and fluorescence properties of copper nanoclusters. Chem Commun 51:11983–11986CrossRefGoogle Scholar
  152. 152.
    Gao Z, Su R, Qia W, Wang L, He Z (2014) Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff. Sensors Actuators B Chem 195:359–364CrossRefGoogle Scholar
  153. 153.
    Zhu HW, Dai WX, Yu XD, Xu JJ, Chen HY (2015) Poly thymine stabilized copper nanoclusters as a fluorescence probe for melamine sensing. Talanta 144:642–647PubMedCrossRefGoogle Scholar
  154. 154.
    Han A, Xiong L, Hao S, Yang Y, Li X, Fang G, Liu J, Pei Y, Wang S (2018) Highly bright self-assembled copper nanoclusters: a novel Photoluminescent probe for sensitive detection of histamine. Anal Chem 90:9060–9067PubMedCrossRefGoogle Scholar
  155. 155.
    Song C, Hong W, Zhang X, Lu Y (2018) Label-free and sensitive detection of Ochratoxin A based on dsDNA-templated copper nanoparticles and exonuclease-catalyzed target recycling amplification. Analyst 143:1829–1834PubMedCrossRefGoogle Scholar
  156. 156.
    Wang B, Gui R, Jin H, He W, Wang Z (2018) Red-emitting BSA-stabilized copper nanoclusters acted as a sensitive probe for fluorescence sensing and visual imaging detection of rutin. Talanta 178:1006–1010PubMedCrossRefGoogle Scholar
  157. 157.
    Aparna RS, Devi JSA, Sachidanandan P, George S (2018) Polyethylene imine capped copper nanoclusters-fluorescent and colorimetric onsite sensor for the trace level detection of TNT. Sensors Actuators B Chem 254:811–819CrossRefGoogle Scholar
  158. 158.
    Deng X, Huang X, Wu D (2015) Förster resonance-energy-transfer detection of 2,4,6-trinitrophenol using copper nanoclusters. Anal Bioanal Chem 407:4607–4613PubMedCrossRefGoogle Scholar
  159. 159.
    Wang Y, Chen T, Zhuang Q, Ni Y (2018) Label-free photoluminescence assay for nitrofurantoin detection in lake water samples using adenosine-stabilized copper nanoclusters as nanoprobes. Talanta 179:409–413PubMedCrossRefGoogle Scholar
  160. 160.
    Li H, Chang J, Hou T, Ge L, Li F (2016) A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters. Talanta 160:475–480PubMedCrossRefGoogle Scholar
  161. 161.
    Liao X, Li R, Li Z, Sun X, Wang Z, Liu J (2015) Fast synthesis of copper nanoclusters through the use of hydrogen peroxide additive and their application for the fluorescence detection of Hg2+ in water samples. New J Chem 39:5240–5248CrossRefGoogle Scholar
  162. 162.
    Hu X, Wang W, Huang Y (2016) Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff. Talanta 154:409–415PubMedCrossRefGoogle Scholar
  163. 163.
    Wang C, Cheng H, Huang Y, Xu Z, Lin H, Zhang C (2015) Facile sonochemical synthesis of pH-responsive copper nanoclusters for selective and sensitive detection of Pb2+ in living cells. Analyst 140:5634–5639PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Zhong Y, Zhu J, Wang Q, He Y, Ge Y, Song C (2015) Copper nanoclusters coated with bovine serum albumin as a regenerable fluorescent probe for copper (II) ion. Microchim Acta 182:909CrossRefGoogle Scholar
  165. 165.
    Qing Z, Mao Z, Qing T, He X, Zou Z, He D, Shi H, Huang J, Liu J, Wang K (2014) Visual and portable strategy for copper (II) detection based on a striplike poly(thymine)-caged and microwell-printed hydrogel. Anal Chem 86:11263–11268PubMedCrossRefGoogle Scholar
  166. 166.
    Wen Z, Song S, Hu T, Wang C, Qu F, Wang P, Yang M (2019) A dual emission nanocomposite prepared from copper nanoclusters and carbon dots as a ratiometric fluorescent probe for sulfide and gaseous H2S. Microchim Acta 186:258CrossRefGoogle Scholar
  167. 167.
    Pang J, Lu Y, Gao X, He L, Sun J, Yang F, Hao Z, Liu Y (2019) DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge. Microchim Acta 186:364CrossRefGoogle Scholar
  168. 168.
    Zhong Y, Wang Q, He Y, Ge Y, Song G (2015) A novel fluorescence and naked eye sensor for iodide in urine based on the iodide induced oxidative etching and aggregation of Cu nanoclusters. Sensors Actuators B Chem 209:147–153CrossRefGoogle Scholar
  169. 169.
    Ma Y, Yu Y, Lin B, Zhang L, Cao Y, Guo M (2019) A novel signal amplification strategy based on the use of copper nanoclusters for ratiometric fluorimetric determination of o-phenylenediamine. Microchim Acta 186:206CrossRefGoogle Scholar
  170. 170.
    Bao Z, Zhang K, Jian J, Hu Z, Yuan K, Shao H, Peng K, Jiang Z, Zapien JA, Yan Y, Zhang C, Zhou H (2018) Strongly fluorescent cysteamine-coated copper nanoclusters as a fluorescent probe for determination of picric acid. Microchim Acta 185:507CrossRefGoogle Scholar
  171. 171.
    Hatefi A, Rahimpour E, Khoubnasabjafari M, Edalat M, Jouyban-Gharamaleki V, Alvani-Alamdari S, Nokhodchi A, Pournaghi-Azar MH, Jouyban A (2019) A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Microchim Acta 186:194CrossRefGoogle Scholar
  172. 172.
    Ma C, Chen M, Liu H, Wu K, He H, Wang K (2018) A rapid method for the detection of humic acid based on the poly(thymine)-templated copper nanoparticles. Chin Chem Lett 29:136–138CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environment and ResourcesXiangtan UniversityXiangtanChina
  2. 2.School of Chemistry and Biological EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations