Advertisement

Microchimica Acta

, 186:629 | Cite as

Laser-induced breakdown spectroscopy as a novel readout method for nanoparticle-based immunoassays

  • Pavlína ModlitbováEmail author
  • Zdeněk Farka
  • Matěj Pastucha
  • Pavel Pořízka
  • Karel Novotný
  • Petr Skládal
  • Jozef Kaiser
Original Paper
  • 36 Downloads

Abstract

Laser-induced breakdown spectroscopy (LIBS) was examined as a novel method for readout of microtiter plate immunoassays involving nanoparticles (NP). The so-called Tag-LIBS technique is a sensitive method for the detection of specific biomarkers. It was applied to the determination of NP labels using nanosecond ablation sampling. The NP labels were examined from the bottom of a standard 96-well microtiter plate. Thanks to the flexibility of LIBS instrumentation, both the plasma emission collection and the focusing optics arrangements can be collinearly arranged. The experiments showed that silver NPs and gold NPs can be readily quantified on the bottom of the microtiter plate. Utilizing this technique, a sandwich immunoassay for human serum albumin using streptavidin-coated AgNP labels was developed. The assay has a 10 ng·mL−1 detection limit which is comparable to the sensitivity of fluorometric readout. The main advantage of this LIBS technique is its wide scope in which it enables a detection of almost any type of NP labels, irrespective to any fluorescence or catalytic properties. Owing to the immediate signal response, the relatively simple instrumentation also enables assay automation. The LIBS capability of multi-elemental analyses makes it a promising and fast alternative to other readout techniques, in particular with respect to multiplexed detection of biomarkers.

Graphical abstract

Laser-induced breakdown spectroscopy (LIBS) is used as a novel readout method of nanoparticle-based immunoassays in microtiter plates. After formation of sandwich immunocomplex, the analyte concentration is quantified as the signal of Ag nanoparticle labels determined by LIBS.

Keywords

Collinear plasma collection Gold nanoparticles Laser ablation Microtiter plate Sandwich immunoassay Silver nanoparticles Streptavidin Tag-LIBS 

Notes

Acknowledgments

This research has been financially supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601). This work was also carried out with the support of CEITEC Nano Research Infrastructure (MEYS CR, 2016–2019), CEITEC Nano+ project, ID CZ.02.1.01/0.0/0.0/16_013/0001728. CIISB research infrastructure project LM2015043, funded by MEYS CR, is gratefully acknowledged for financial support of the measurements at CF Nanobiotechnology.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Tighe PJ, Ryder RR, Todd I, Fairclough LC (2015) ELISA in the multiplex era: potentials and pitfalls. Proteomics Clin Appl 9:406–422.  https://doi.org/10.1002/prca.201400130 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418.  https://doi.org/10.1373/clinchem.2005.051532 CrossRefPubMedGoogle Scholar
  3. 3.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093.  https://doi.org/10.1039/c3cs35486e CrossRefPubMedGoogle Scholar
  4. 4.
    Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042.  https://doi.org/10.1021/acs.chemrev.7b00037 CrossRefPubMedGoogle Scholar
  5. 5.
    Wu J, Li S, Wei H (2018) Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horizons 3:367–382.  https://doi.org/10.1039/c8nh00070k CrossRefGoogle Scholar
  6. 6.
    Sang F, Liu J, Zhang X, Pan J (2018) An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim Acta 185:1–7.  https://doi.org/10.1007/s00604-018-2794-6 CrossRefGoogle Scholar
  7. 7.
    Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan AH (2018) Colorimetric aptasensor for campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Microchim Acta 185:448.  https://doi.org/10.1007/s00604-018-2976-2 CrossRefGoogle Scholar
  8. 8.
    Farka Z, Čunderlová V, Horáčková V, Pastucha M, Mikušová Z, Hlaváček A, Skládal P (2018) Prussian blue nanoparticles as a catalytic label in a Sandwich Nanozyme-linked immunosorbent assay. Anal Chem 90:2348–2354.  https://doi.org/10.1021/acs.analchem.7b04883 CrossRefPubMedGoogle Scholar
  9. 9.
    Xu HH, Deng HH, Lin XQ, Wu YY, Lin XL, Peng HP, Liu AL, Xia XH, Chen W (2017) Colorimetric glutathione assay based on the peroxidase-like activity of a nanocomposite consisting of platinum nanoparticles and graphene oxide. Microchim Acta 184:3945–3951.  https://doi.org/10.1007/s00604-017-2429-3 CrossRefGoogle Scholar
  10. 10.
    Wu Y-T, Qiu X, Lindbo S, Susumu K, Medintz IL, Hober S, Hildebrandt N (2018) Quantum dot-based FRET immunoassay for HER2 using Ultrasmall affinity proteins. Small 14:1802266.  https://doi.org/10.1002/smll.201802266 CrossRefGoogle Scholar
  11. 11.
    Yang L, Deng W, Cheng C, Tan Y, Xie Q, Yao S (2018) Fluorescent immunoassay for the detection of pathogenic Bacteria at the single-cell level using carbon dots-encapsulated breakable Organosilica Nanocapsule as labels. ACS Appl Mater Interfaces 10:3441–3448.  https://doi.org/10.1021/acsami.7b18714 CrossRefPubMedGoogle Scholar
  12. 12.
    Farka Z, Mickert MJ, Hlaváček A, Skládal P, Gorris HH (2017) Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Anal Chem 89:11825–11830.  https://doi.org/10.1021/acs.analchem.7b03542 CrossRefPubMedGoogle Scholar
  13. 13.
    Škarková P, Novotný K, Lubal P, Jebavá A, Pořízka P, Klus J, Farka Z, Hrdlička A, Kaiser J (2017) 2d distribution mapping of quantum dots injected onto filtration paper by laser-induced breakdown spectroscopy. Spectrochim Acta - Part B At Spectrosc 131:107–114.  https://doi.org/10.1016/j.sab.2017.03.016 CrossRefGoogle Scholar
  14. 14.
    Modlitbová P, Hlaváček A, Švestková T, et al (2019) The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: bioaccumulation, imaging, and spectroscopic studies. Chemosphere 225:723–734.  https://doi.org/10.1016/j.chemosphere.2019.03.074 CrossRefGoogle Scholar
  15. 15.
    Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V, Lux F, Benoit JM, Panczer G, Dugourd P, Tillement O, Pelascini F, Sancey L, Motto-Ros V (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6:1–9.  https://doi.org/10.1038/srep29936 CrossRefGoogle Scholar
  16. 16.
    Modlitbová P, Novotný K, Pořízka P, Klus J, Lubal P, Zlámalová-Gargošová H, Kaiser J (2018) Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L. Ecotoxicol Environ Saf 147:334–341.  https://doi.org/10.1016/j.ecoenv.2017.08.053 CrossRefPubMedGoogle Scholar
  17. 17.
    Sovago M, Buis EJ, Sandtke M (2013) Nanoparticle detection in aqueous solutions using Raman and laser induced breakdown spectroscopy. Spectrochim Acta - Part B At Spectrosc 87:182–187.  https://doi.org/10.1016/j.sab.2013.05.033 CrossRefGoogle Scholar
  18. 18.
    Borowik T, Przybyło M, Pala K, Otlewski J, Langner M (2011) Quantitative measurement of Au and Fe in ferromagnetic nanoparticles with laser induced breakdown spectroscopy using a polymer-based gel matrix. Spectrochim Acta - Part B At Spectrosc 66:726–732.  https://doi.org/10.1016/j.sab.2011.09.008 CrossRefGoogle Scholar
  19. 19.
    Fortes FJ, Fernández-Bravo A, Javier Laserna J (2014) Chemical characterization of single micro- and nano-particles by optical catapulting-optical trapping-laser-induced breakdown spectroscopy. Spectrochim Acta - Part B At Spectrosc 100:78–85.  https://doi.org/10.1016/j.sab.2014.08.023 CrossRefGoogle Scholar
  20. 20.
    Konecna M, Novotny K, Krizkova S, Blazkova I, Kopel P, Kaiser J, Hodek P, Kizek R, Adam V (2014) Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy. Spectrochim Acta - Part B At Spectrosc 101:220–225.  https://doi.org/10.1016/j.sab.2014.08.037 CrossRefGoogle Scholar
  21. 21.
    Metzinger A, Nagy A, Gáspár A, Márton Z, Kovács-Széles É, Galbács G (2016) The feasibility of liquid sample microanalysis using polydimethylsiloxane microfluidic chips with in-channel and in-port laser-induced breakdown spectroscopy detection. Spectrochim Acta Part B At Spectrosc 126:23–30.  https://doi.org/10.1016/j.sab.2016.10.014 CrossRefGoogle Scholar
  22. 22.
    Markushin Y, Sivakumar P, Connolly D, Melikechi N (2015) Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma. Anal Bioanal Chem 407:1849–1855.  https://doi.org/10.1007/s00216-014-8433-0 CrossRefPubMedGoogle Scholar
  23. 23.
    Hermanson G (2013) Bioconjugate Techniques, 3rd edn. Academic PressGoogle Scholar
  24. 24.
    Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X (2018) A review of laser-induced breakdown spectroscopy signal enhancement. Appl Spectrosc Rev 53:1–35.  https://doi.org/10.1080/05704928.2017.1352509 CrossRefGoogle Scholar
  25. 25.
    Park BS, Jung KI, Lee SJ, Lee KY, Jung HW (2018) Effect of particle shape on drying dynamics in suspension drops using multi-speckle diffusing wave spectroscopy. Colloid Polym Sci 296:971–979.  https://doi.org/10.1007/s00396-018-4315-x CrossRefGoogle Scholar
  26. 26.
    Díaz D, Hahn DW, Molina A (2017) Spectrochimica Acta Part B Quanti fi cation of gold and silver in minerals by laser-induced breakdown spectroscopy. Spectrochim Acta Part B At Spectrosc 136:106–115.  https://doi.org/10.1016/j.sab.2017.08.008 CrossRefGoogle Scholar
  27. 27.
    Rifai K, Laville S, Vidal F, Sabsabi M, Chaker M (2012) Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy. J Anal At Spectrom 27:276–283.  https://doi.org/10.1039/c1ja10178a CrossRefGoogle Scholar
  28. 28.
    Liu R, Liu B, Guan G, Jiang C, Zhang Z (2012) Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays. Chem Commun 48:9421–9423.  https://doi.org/10.1039/c2cc34115h CrossRefGoogle Scholar
  29. 29.
    Wang Y, Vaidyanathan R, Shiddiky MJA, Trau M (2015) Enabling rapid and specific surface-enhanced Raman scattering immunoassay using Nanoscaled surface shear forces. ACS Nano 9:6354–6362.  https://doi.org/10.1021/acsnano.5b01929 CrossRefPubMedGoogle Scholar
  30. 30.
    Quinn ZA, Baranov VI, Tanner SD, Wrana JL (2002) Simultaneous determination of proteins using an element-tagged immunoassay coupled with ICP-MS detection. J Anal At Spectrom 17:892–896.  https://doi.org/10.1039/b202306g CrossRefGoogle Scholar
  31. 31.
    Cao Y, Mo G, Feng J, He X, Tang L, Yu C, Deng B (2018) Based on ZnSe quantum dots labeling and single particle mode ICP-MS coupled with sandwich magnetic immunoassay for the detection of carcinoembryonic antigen in human serum. Anal Chim Acta 1028:22–31.  https://doi.org/10.1016/j.aca.2018.04.039 CrossRefPubMedGoogle Scholar
  32. 32.
    Careri M, Elviri L, Mangia A, Mucchino C (2007) ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods. Anal Bioanal Chem 387:1851–1854.  https://doi.org/10.1007/s00216-006-1091-0 CrossRefPubMedGoogle Scholar
  33. 33.
    Ko JA, Lim HB (2016) Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay. Anal Chim Acta 938:1–6.  https://doi.org/10.1016/j.aca.2016.07.035 CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang W, Jiang L, Piper JA, Wang Y (2018) SERS Nanotags and their applications in biosensing and bioimaging. J Anal Test 2:26–44.  https://doi.org/10.1007/s41664-018-0053-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Central European Institute of Technology (CEITEC)Brno University of TechnologyBrnoCzech Republic
  2. 2.Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
  3. 3.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations