Advertisement

Microchimica Acta

, 186:650 | Cite as

Ambient temperature fabrication of a covalent organic framework from 1,3,5-triformylphloroglucinol and 1,4-phenylenediamine as a coating for use in open-tubular capillary electrochromatography of drugs and amino acids

  • Xuan Wang
  • Xiaoyu Hu
  • Yutong Shao
  • Lin Peng
  • Qiqi Zhang
  • Tianhui Zhou
  • Yuhong XiangEmail author
  • Nengsheng YeEmail author
Original Paper
  • 17 Downloads

Abstract

A covalent organic framework (COF) named TpPa-1 was designed and synthesized at ambient temperature by an ultrasound-assisted method from 1,3,5-triformylphloroglucinol (Tp) and 1,4-phenylenediamine (Pa-1). It was utilized as a stationary phase in open-tubular capillary electrochromatography (OT-CEC). The column was coated with TpPa-1 using a covalent bonding strategy. The coated capillary was characterized by morphology, crystallography, and mesoporous analysis to confirm the successful fabrication. The OT-CEC method was utilized for the analysis of tetracyclines, sulfonamides, cephalosporins and amino acids with high-resolution (Rs > 1.81) and good precision (RSD < 4.9%). It takes about 12 h from COF preparation to OT-CEC separation.

Graphical abstract

A covalent organic framework (COF) named TpPa-1 was synthesized at ambient temperature by an ultrasound-assisted method from 1,3,5-triformylphloroglucinol (Tp) and 1,4-phenylenediamine (Pa-1). COF-TpPa-1 modified capillary column was utilized for the analysis of tetracyclines, sulfonamides, cephalosporins and amino acids with high-resolution and good precision.

Keywords

Ambient temperature fabrication Amino acids Cephalosporins Covalent bonding strategy Covalent organic frameworks Open-tubular capillary electrochromatography Sulfonamides Tetracyclines TpPa-1 

Notes

Acknowledgements

This work was financially supported by the Beijing Natural Science Foundation (2162008).

Authors’ contributions

X. Wang and X. Hu contribute equally to this work.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3741_MOESM1_ESM.pdf (4.6 mb)
ESM 1 (PDF 4.56 MB)

References

  1. 1.
    Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310(5751):1166–1170.  https://doi.org/10.1126/science.1120411 CrossRefPubMedGoogle Scholar
  2. 2.
    Furukawa H, Yaghi OM (2009) Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 131(25):8875–8883.  https://doi.org/10.1021/ja9015765 CrossRefPubMedGoogle Scholar
  3. 3.
    Huang N, Zhai L, Xu H, Jiang D (2017) Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J Am Chem Soc 139(6):2428–2434.  https://doi.org/10.1021/jacs.6b12328 CrossRefPubMedGoogle Scholar
  4. 4.
    Vyas VS, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz JP, Lotsch BV (2016) Exploiting noncovalent interactions in an imine-based covalent organic framework for quercetin delivery. Adv Mater 28(39):8749–8754.  https://doi.org/10.1002/adma.201603006 CrossRefPubMedGoogle Scholar
  5. 5.
    Wu C, Liu Y, Liu H, Duan C, Pan Q, Zhu J, Hu F, Ma X, Jiu T, Li Z, Zhao Y (2018) Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J Am Chem Soc 140(31):10016–10024.  https://doi.org/10.1021/jacs.8b06291 CrossRefPubMedGoogle Scholar
  6. 6.
    Wang X, Ye NS (2017) Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 38(24):3059–3078.  https://doi.org/10.1002/elps.201700248 CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang S, Yang Q, Wang C, Luo X, Kim J, Wang Z, Yamauchi Y (2018) Porous organic frameworks: advanced materials in analytical chemistry. Adv Sci 5(12):1801116.  https://doi.org/10.1002/advs.201801116 CrossRefGoogle Scholar
  8. 8.
    Qian HL, Yang CX, Wang WL, Yang C, Yan XP (2018) Advances in covalent organic frameworks in separation science. J Chromatogr A 1542:1–18.  https://doi.org/10.1016/j.chroma.2018.02.023 CrossRefPubMedGoogle Scholar
  9. 9.
    Qian HL, Yang CX, Yan XP (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7:12104.  https://doi.org/10.1038/ncomms12104 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang S, Zheng Y, An H, Aguila B, Yang CX, Dong Y, Xie W, Cheng P, Zhang Z, Chen Y, Ma S (2018) Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angew Chem Int Edit 57(51):16754–16759.  https://doi.org/10.1002/anie.201810571 CrossRefGoogle Scholar
  11. 11.
    D'Orazio G, Asensio-Ramos M, Fanali C, Hernández-Borges J, Fanali S (2016) Capillary electrochromatography in food analysis. TrAC Trend Anal Chem 82:250–267.  https://doi.org/10.1016/j.trac.2016.06.012 CrossRefGoogle Scholar
  12. 12.
    Tarongoy FM Jr, Haddad PR, Quirino JP (2017) Recent developments in open tubular capillary electrochromatography from 2016 to 2017. Electrophoresis 39(1):34–52.  https://doi.org/10.1002/elps.201700280 CrossRefPubMedGoogle Scholar
  13. 13.
    Liang X, Hou X, Chan JHM, Guo Y, Hilder EF (2018) The application of graphene-based materials as chromatographic stationary phases. TrAC Trends Anal Chem 98:149–160.  https://doi.org/10.1016/j.trac.2017.11.008 CrossRefGoogle Scholar
  14. 14.
    Liu ZR, Du YX, Feng ZJ (2017) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184(2):583–593.  https://doi.org/10.1007/s00604-016-2014-1 CrossRefGoogle Scholar
  15. 15.
    Ye N, Li J, Xie Y, Liu C (2013) Graphene oxide coated capillary for chiral separation by CE. Electrophoresis 34(6):841–845.  https://doi.org/10.1002/elps.201200516 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang X, An J, Li J, Ye N (2017) A capillary coated with a metal-organic framework for the capillary electrochromatographic determination of cephalosporins. Microchim Acta 184(5):1345–1351.  https://doi.org/10.1007/s00604-017-2131-5 CrossRefGoogle Scholar
  17. 17.
    Ma JC, Ye NS, Li J (2016) Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography. Electrophoresis 37(4):601–608.  https://doi.org/10.1002/elps.201500342 CrossRefPubMedGoogle Scholar
  18. 18.
    Xu Y, Xu L, Qi S, Dong Y, ur Rahman Z, Chen H, Chen X (2013) In situ synthesis of MIL-100(Fe) in the capillary column for capillary electrochromatographic separation of small organic molecules. Anal Chem 85(23):11369–11375.  https://doi.org/10.1021/ac402254u CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang JH, Zhu PJ, Xie SM, Zi M, Yuan LM (2018) Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography. Anal Chim Acta 999:169–175.  https://doi.org/10.1016/j.aca.2017.11.021 CrossRefPubMedGoogle Scholar
  20. 20.
    Niu XY, Ding SY, Wang WF, Xu YL, Xu YY, Chen HL, Chen XG (2016) Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. J Chromatogr A 1436:109–117.  https://doi.org/10.1016/j.chroma.2016.01.066 CrossRefPubMedGoogle Scholar
  21. 21.
    Kong DY, Bao T, Chen ZL (2017) In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Microchim Acta 184(4):1169–1176.  https://doi.org/10.1007/s00604-017-2095-5 CrossRefGoogle Scholar
  22. 22.
    Bao T, Tang PX, Kong DY, Mao ZK, Chen ZL (2016) Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. J Chromatogr A 1445:140–148.  https://doi.org/10.1016/j.chroma.2016.03.085 CrossRefPubMedGoogle Scholar
  23. 23.
    Ye NS, Wang X, Liu QY, Hu XY (2018) Covalent bonding of Schiff base network-1 as a stationary phase for capillary electrochromatography. Anal Chim Acta 1028:113–120.  https://doi.org/10.1016/j.aca.2018.04.037 CrossRefPubMedGoogle Scholar
  24. 24.
    Li Z, Mao Z, Chen Z (2019) In-situ growth of a metal organic framework composed of zinc(II), adeninate and biphenyldicarboxylate as a stationary phase for open-tubular capillary electrochromatography. Microchim Acta 186:53.  https://doi.org/10.1007/s00604-018-3115-9
  25. 25.
    Zhang FM, Sheng JL, Yang ZD, Sun XJ, Tang HL, Lu M, Dong H, Shen FC, Liu J, Lan YQ (2018) Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew Chem Int Edit 57 (37):12106–12110. https://doi.org/10.1002/anie.201806862 CrossRefGoogle Scholar
  26. 26.
    Han X, Zhang J, Huang J, Wu X, Yuan D, Liu Y, Cui Y (2018) Chiral induction in covalent organic frameworks. Nat Commun 9(1):1294.  https://doi.org/10.1038/s41467-018-03689-9
  27. 27.
    Peng YW, Wong WK, Hu ZG, Cheng YD, Yuan DQ, Khan SA, Zhao D (2016) Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs). Chem Mater 28(14):5095–5101.  https://doi.org/10.1021/acs.chemmater.6b01954 CrossRefGoogle Scholar
  28. 28.
    Yang H, Wu H, Xu Z, Mu BW, Lin ZX, Cheng XX, Liu GH, Pan FS, Cao XZ, Jiang ZY (2018) Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. J Mem Sci 561:79–88.  https://doi.org/10.1016/j.memsci.2018.05.036 CrossRefGoogle Scholar
  29. 29.
    Kong DY, Chen ZL (2018) Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Electrophoresis 39(22):2912–2918.  https://doi.org/10.1002/elps.201800235 CrossRefGoogle Scholar
  30. 30.
    Ma YF, Yuan F, Zhang XH, Zhou YL, Zhang XX (2017) Highly efficient enrichment of N-linked glycopeptides using a hydrophilic covalent–organic framework. Analyst 142(17):3212–3218.  https://doi.org/10.1039/c7an01027c CrossRefGoogle Scholar
  31. 31.
    Wang HP, Jiao FL, Gao FY, Zhao XY, Zhao Y, Shen YH, Zhang YJ, Qian XH (2017) Covalent organic framework-coated magnetic graphene as a novel support for trypsin immobilization. Anal Bioanal Chem 409(8):2179–2187.  https://doi.org/10.1007/s00216-016-0163-z CrossRefGoogle Scholar
  32. 32.
    Ribeiro AR, Lutze HV, Schmidt TC (2018) Base-catalyzed hydrolysis and speciation-dependent photolysis of two cephalosporin antibiotics, ceftiofur and cefapirin. Water Res 134:253–260.  https://doi.org/10.1016/j.watres.2017.12.048 CrossRefGoogle Scholar
  33. 33.
    Wan S, Gandara F, Asano A, Furukawa H, Saeki A, Dey SK, Liao L, Ambrogio MW, Botros YY, Duan XF, Seki S, Stoddart JF, Yaghi OM (2011) Covalent organic frameworks with high charge carrier mobility. Chem Mater 23(18):4094–4097.  https://doi.org/10.1021/cm201140r CrossRefGoogle Scholar
  34. 34.
    Han X, Huang J, Yuan C, Liu Y, Cui Y (2018) Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 140(3):892–895.  https://doi.org/10.1021/jacs.7b12110 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryCapital Normal UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food PoisoningBeijing Center for Disease Prevention and ControlBeijingPeople’s Republic of China

Personalised recommendations