Microchimica Acta

, 186:635 | Cite as

A dual-channel ratiometric fluorescent probe for determination of the activity of tyrosinase using nitrogen-doped graphene quantum dots and dopamine-modified CdTe quantum dots

  • Zhengyi Qu
  • Tian Yu
  • Lihua BiEmail author
Original Paper


A dual-channel ratiometric fluorometric assay is described for the determination of the activity of the enzyme tyrosinase (TYR). It is making use of blue-emitting nitrogen-doped graphene quantum dots (bQDs) and of red-emitting dopamine-modified CdTe quantum dots (DA-rQDs). A mixture of the two kinds of quantum dots was prepared, with the ratiometric fluorescence intensity of red to blue adjusted to 5:1. The dopamine on the rQDs is catalytically oxidized by TYR to form dopamine quinone, and this leads to a reduction of the intensity of red fluorescence (peaking at 644 nm). The emission of the bQDs (peaking at 440 nm) represents a stable reference signal. After adding different activities of TYR, the color of the fluorescence of the system continuously changes from red to blue. This can also be visually observed. The ratio of luminescence intensities (at 644/440 nm) can be used to quantify the activity of TYR, and the detection limit is 4.5 mU mL−1. In addition, a test strip is described based on the above method.

Graphical abstract

Schematic representation of the ratiometric fluorometric method for determination of the activity of tyrosinase (TYR). (The full name of the abbreviation in the Scheme: 1-ethyl-3-[3-(dimethylamino)-propyl] carbodiimide hydrochloride (EDC), dopamine (DA), N-hydroxysuccinimide (NHS), nitrogen-doped graphene quantum dots (bQDs), CdTe quantum dots (rQDs)).


Enzymatic assay Non-fluorescent substrate Visual detection Colorimetry Test papers 



This work was financially supported by the National Natural Science Foundation of China (21173102 and 21473072).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3733_MOESM1_ESM.docx (860 kb)
ESM 1 (DOCX 856 kb)


  1. 1.
    Claus H, Decker H (2006) Bacterial tyrosinases. Syst Appl Microbiol 29(1):3–14. CrossRefPubMedGoogle Scholar
  2. 2.
    Yoruk R, Marshall MR (2003) Physicochemical properties and function of plant polyphenol oxidase: a review. J Food Biochem 27(5):361–422. CrossRefGoogle Scholar
  3. 3.
    Chang T-S (2009) An updated review of Tyrosinase inhibitors. Int J Mol Sci 10(6):2440–2475. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100(2):219–232. CrossRefPubMedGoogle Scholar
  5. 5.
    Garcia P, Ramallo IA, Furlan RLE (2017) Reverse phase compatible TLC-bioautography for detection of Tyrosinase inhibitors. Phytochem Anal 28(2):101–105. CrossRefPubMedGoogle Scholar
  6. 6.
    Kim H-r (2014) Recent advances in Tyrosinase research as an industrial enzyme. The Korean Society for Biotechnology and Bioengineering 29(1):1–8Google Scholar
  7. 7.
    Tessari I, Bisaglia M, Valle F, Samori B, Bergantino E, Mammi S, Bubacco L (2008) The reaction of alpha-synuclein with tyrosinase - possible implications for Parkinson disease. J Biol Chem 283(24):16808–16817. CrossRefPubMedGoogle Scholar
  8. 8.
    Wang L, Gan Z-F, Guo D, Xia H-L, Patrice FT, Hafez ME, Li D-W (2019) Electrochemistry-regulated recyclable SERS sensor for sensitive and selective detection of Tyrosinase activity. Anal Chem 91(10):6507–6513. CrossRefPubMedGoogle Scholar
  9. 9.
    Li S, Mao L, Tian Y, Wang J, Zhou N (2012) Spectrophotometric detection of tyrosinase activity based on boronic acid-functionalized gold nanoparticles. Analyst 137(4):823–825. CrossRefPubMedGoogle Scholar
  10. 10.
    Lin T-E, Cortes-Salazar F, Lesch A, Qiao L, Bondarenko A, Girault HH (2015) Multiple scanning electrochemical microscopy mapping of tyrosinase in micro-contact printed fruit samples on polyvinylidene fluoride membrane. Electrochim Acta 179:57–64. CrossRefGoogle Scholar
  11. 11.
    Liu X, Yan R, Zhu J, Zhang J, Liu X (2015) Growing TiO2 nanotubes on graphene nanoplatelets and applying the nanonanocomposite as scaffold of electrochemical tyrosinase biosensor. Sensors Actuators B Chem 209:328–335. CrossRefGoogle Scholar
  12. 12.
    Niu W-J, Shan D, Zhu R-H, Deng S-Y, Cosnier S, Zhang X-J (2016) Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and L-ascorbic acid. Carbon 96:1034–1042. CrossRefGoogle Scholar
  13. 13.
    Qiao J, Hwang Y-H, Chen C-F, Qi L, Dong P, Mu X-Y, Kim D-P (2015) Ratiometric fluorescent polymeric thermometer for thermogenesis investigation in living cells. Anal Chem 87(20):10535–10541. CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by Ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133(22):8424–8427. CrossRefPubMedGoogle Scholar
  15. 15.
    Wang K, Qian J, Jiang D, Yang Z, Du X, Wang K (2015) Onsite naked eye determination of cysteine and homocysteine using quencher displacement-induced fluorescence recovery of the dual-emission hybrid probes with desired intensity ratio. Biosens Bioelectron 65:83–90. CrossRefPubMedGoogle Scholar
  16. 16.
    Chai L, Zhou J, Feng H, Tang C, Huang Y, Qian Z (2015) Functionalized carbon quantum dots with dopamine for Tyrosinase activity monitoring and inhibitor screening: in vitro and intracellular investigation. ACS Appl Mater Interfaces 7(42):23564–23574. CrossRefPubMedGoogle Scholar
  17. 17.
    Liu J, Dong Y, Ma Y, Han Y, Ma S, Chen H, Chen X (2018) One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO probing and cell imaging. Nanoscale 10(28):13589–13598. CrossRefPubMedGoogle Scholar
  18. 18.
    Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X (2016) Fluorescent probes for "off-on" highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta 152:288–300. CrossRefPubMedGoogle Scholar
  19. 19.
    Song Y, Li Y, Liu Z, Liu L, Wang X, Su X, Ma Q (2014) A novel ultrasensitive carboxymethyl chitosan-quantum dot-based fluorescence "turn on-off" nanosensor for lysozyme detection. Biosens Bioelectron 61:9–13. CrossRefPubMedGoogle Scholar
  20. 20.
    Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J (2015) Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B Chem 214:29–35. CrossRefGoogle Scholar
  21. 21.
    Shi B, Zhang L, Lan C, Zhao J, Su Y, Zhao S (2015) One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury (II) ions. Talanta 142:131–139. CrossRefPubMedGoogle Scholar
  22. 22.
    Huang X, Zhou Y, Liu C, Zhang R, Zhang L, Du S, Liu B, Han M-Y, Zhang Z (2016) A single dual-emissive nanofluorophore test paper for highly sensitive colorimetry-based quantification of blood glucose. Biosens Bioelectron 86:530–535. CrossRefPubMedGoogle Scholar
  23. 23.
    Li H, Liu J, Guo S, Zhang Y, Huang H, Liu Y, Kang Z (2015) Carbon dots from PEG for highly sensitive detection of levodopa. J Mater Chem B 3(11):2378–2387. CrossRefGoogle Scholar
  24. 24.
    Zhu X, Hu J, Zhao Z, Sun M, Chi X, Wang X, Gao J (2015) Kinetic and sensitive analysis of Tyrosinase activity using Electron transfer complexes: in vitro and intracellular study. Small 11(7):862–870. CrossRefPubMedGoogle Scholar
  25. 25.
    Qian L, Hong H, Han M, Xu C, Wang S, Guo Z, Yan D (2019) A ketone-functionalized carbazolic porous organic framework for sensitive fluorometric determination of p-nitroaniline. Microchim Acta 186(7):457. CrossRefGoogle Scholar
  26. 26.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. CrossRefGoogle Scholar
  27. 27.
    Teng Y, Jia X, Li J, Wang E (2015) Ratiometric fluorescence detection of Tyrosinase activity and dopamine using thiolate-protected gold nanoclusters. Anal Chem 87(9):4897–4902. CrossRefPubMedGoogle Scholar
  28. 28.
    Yuan J, Cen Y, Kong X-J, Wu S, Liu C-L, Yu R-Q, Chu X (2015) MnO2-Nanosheet-modified Upconversion Nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 7(19):10548–10555. CrossRefPubMedGoogle Scholar
  29. 29.
    Hu J-J, Bai X-L, Liu Y-M, Liao X (2017) Functionalized carbon quantum dots with dopamine for tyrosinase activity analysis. Anal Chim Acta 995:99–105. CrossRefPubMedGoogle Scholar
  30. 30.
    Ma X, Gao W, Halawa MI, Lan Y, Li J, Xu G (2019) Lucigenin fluorescent assay of tyrosinase activity and its inhibitor screening. Sensors Actuators B Chem 280:41–45. CrossRefGoogle Scholar
  31. 31.
    Liu B-W, Huang P-C, Li J-F, Wu F-Y (2017) Colorimetric detection of tyrosinase during the synthesis of kojic acid/silver nanoparticles under illumination. Sensors Actuators B Chem 251:836–841. CrossRefGoogle Scholar
  32. 32.
    Wu X, Li L, Shi W, Gong Q, Ma H (2016) Near-infrared fluorescent probe with new recognition moiety for specific detection of Tyrosinase activity: design, synthesis, and application in living cells and zebrafish. Ange Chem Int Ed 55(47):14728–14732. CrossRefGoogle Scholar
  33. 33.
    Xu Q, Yoon J (2011) Visual detection of dopamine and monitoring tyrosinase activity using a pyrocatechol violet-Sn4+ complex. Chem Commun 47(46):12497–12499. CrossRefGoogle Scholar
  34. 34.
    Lei C, Zhao X-E, Sun J, Yan X, Gao Y, Gao H, Zhu S, Wang H (2017) A simple and novel colorimetric assay for tyrosinase and inhibitor screening using 3, 3 ', 5, 5 '-tetramethylbenzidine as a chromogenic probe. Talanta 175:457–462. CrossRefPubMedGoogle Scholar
  35. 35.
    Yang X, Luo Y, Zhuo Y, Feng Y, Zhu S (2014) Novel synthesis of gold nanoclusters templated with L-tyrosine for selective analyzing tyrosinase. Anal Chim Acta 840:87–92. CrossRefPubMedGoogle Scholar
  36. 36.
    Qu Z, Na W, Liu X, Liu H, Su X (2018) A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots. Anal Chim Acta 997:52–59. CrossRefPubMedGoogle Scholar
  37. 37.
    Yan X, Hu T, Wang L, Zhang L, Su X (2016) Near-infrared fluorescence nanoprobe for enzyme-substrate system sensing and in vitro imaging. Biosens Bioelectron 79:922–929. CrossRefPubMedGoogle Scholar
  38. 38.
    Sidhu JS, Singh A, Garg N, Kaur N, Singh N (2018) A highly selective naphthalimide-based ratiometric fluorescent probe for the recognition of tyrosinase and cellular imaging. Analyst 143(18):4476–4483. CrossRefGoogle Scholar
  39. 39.
    Sun JY, Mel H, Wang SF, Gao F (2016) Two-photon semiconducting polymer dots with dual-emission for Ratiometric fluorescent sensing and bioimaging of Tyrosinase activity. Anal Chem 88(14):7372–7377. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.College of Electrical and Electronic EngineeringChangchun University of TechnologyChangchunPeople’s Republic of China

Personalised recommendations