Advertisement

Microchimica Acta

, 186:608 | Cite as

Electrochemiluminescent competitive immunoassay for zearalenone based on the use of a mimotope peptide, Ru(II)(bpy)3-loaded NiFe2O4 nanotubes and TiO2 mesocrystals

  • Dandan Fang
  • Shupei Zhang
  • Hong DaiEmail author
  • Xiuhua LiEmail author
  • Zhensheng HongEmail author
  • Yanyu Lin
Original Paper
  • 115 Downloads

Abstract

An ultrasensitive competitive-type electrochemiluminescence immunoassay for the mycotoxin zearalenone is described. The method is based on the use of (a) a mimotope peptide that was selected from a phage displayed peptide library and used to substitute ZEN for designing the competitive assay; (b) NiFe2O4 nanotubes with large specific surface area loaded with the ECL probe Ru(bpy)32+; and (c) poly(vinylpyrrolidone) (PVP)-assisted synthesis of TiO2 mesocrystals that acts as the sensing platform and support for antibody immobilization. Under the optimized conditions and at an ECL working potential of 1.1 V, a linear response is found for ZEN in the 0.1 to 1.0 × 10−5 ng·mL−1 concentration range with a detection limit as low as 3.3 fg·mL−1.

Graphical abstract

An ultrasensitive competitive-type electrochemiluminescence (ECL) immunosensor based on mimotope peptide was constructed for the detection of Zearalenone.

Keywords

Competitive immunosensor Zearalenone Phage displayed peptide library Metal oxide Mycotoxin analysis 

Notes

Acknowledgments

This project was financially supported by the NSFC (21877012, 21575024, 21205016), National Science Foundation of Fujian Province (2016 J06003, 2016 J05026, 2017 J01620, 2016 J01429) and Education Department of Fujian Province (JK2016009, FBJG20170186, JA14071) was also greatly acknowledged. All authors thank Huan Yi and Xiangqin Zheng for their help in obtaining and processing actual samples.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3714_MOESM1_ESM.doc (620 kb)
ESM 1 (DOC 620 kb)

References

  1. 1.
    Sim JH, Tian F, Jung SY, Auh JH, Chun HS (2018) Multiplex polymerase chain reaction assays for the detection of the zearalenone chemotype of Fusarium species in white and brown rice. Int J Food Microbiol 269:120–127CrossRefGoogle Scholar
  2. 2.
    Saeger SD, Sibanda L, Peteghem CV (2003) Analysis of zearalenone and α-zearalenol in animal feed using high-performance liquid chromatography. Anal Chim Acta 487:137–143CrossRefGoogle Scholar
  3. 3.
    Li S-j, Sheng W, Wen W, Gu Y, J-p W, Wang S (2018) Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Microchim Acta 185:2–8CrossRefGoogle Scholar
  4. 4.
    Li S, Wang J, Sheng W, Wen W, Y G, Wang S (2018) Fluorometric lateral flow immunochromatographic zearalenone assay by exploiting a quencher system composed of carbon dots and silver nanoparticles. Microchim Acta 185:2–9CrossRefGoogle Scholar
  5. 5.
    Chun HS, Choi EH, Chang HJ, Choi SW, Eremin SA (2009) A fluorescence polarization immunoassay for the detection of zearalenone in corn. Anal Chim Acta 639:83–89CrossRefGoogle Scholar
  6. 6.
    Wu Z, Xu E, Chughtai MFJ, Jin Z, Irudayaraj J (2017) Highly sensitive fluorescence sensing of zearalenone using a novel aptasensor based on upconverting nanoparticles. Food Chem 230:673–680CrossRefGoogle Scholar
  7. 7.
    Zhan S, Huang X, Chen R, Li J, Xiong Y (2016) Novel fluorescent ELISA for the sensitive detection of zearalenone based on H2O2 -sensitive quantum dots for signal transduction. Talanta 158:51–56CrossRefGoogle Scholar
  8. 8.
    Zhang F, Liu B, Sheng W, Zhang Y, Liu Q, Li S, Wang S (2018) Fluoroimmunoassays for the detection of zearalenone in maize using CdTe/CdS/ZnS quantum dots. Food Chem 255:421–428CrossRefGoogle Scholar
  9. 9.
    Zhu W, Saddam Khan M, Cao W, Sun X, Ma H, Zhang Y, Wei Q (2018) Ni(OH)2 /NGQDs-based electrochemiluminescence immunosensor for prostate specific antigen detection by coupling resonance energy transfer with Fe3O4@MnO2 composites. Biosens Bioelectron 99:346–352CrossRefGoogle Scholar
  10. 10.
    Yang L, Zhu W, Ren X, Khan MS, Zhang Y, Du B, Wei Q (2017) Macroporous graphene capped Fe3O4 for amplified electrochemiluminescence immunosensing of carcinoembryonic antigen detection based on CeO2@TiO2. Biosens Bioelectron 91:842–848CrossRefGoogle Scholar
  11. 11.
    Zheng H, Yi H, Wen L, Hong D, Hong Z, Lin Y, Li X (2017) A dual-amplified electrochemiluminescence immunosensor constructed on dual-roles of rutile TiO2 mesocrystals for ultrasensitive zearalenone detection. Electrochim Acta 260:847–854CrossRefGoogle Scholar
  12. 12.
    Rami A, Behdani M, Yardehnavi N, Habibi-Anbouhi M, Kazemi-Lomedasht F (2017) An overview on application of phage display technique in immunological studies. Asian Pac J Trop Biomed 7:599–602CrossRefGoogle Scholar
  13. 13.
    He QH, Xu Y, Huang YH, Liu RR, Huang ZB, Li YP (2011) Phage-displayed peptides that mimic zearalenone and its application in immunoassay. Food Chem 126:1312–1315CrossRefGoogle Scholar
  14. 14.
    Zhou Y, Chen S, Luo X, Chai Y, Yuan R (2018) Ternary Electrochemiluminescence nanostructure ofAu nanoclusters as a highly efficient signal label for ultrasensitive detection of Cancer biomarkers. Anal Chem 90:10024–10030CrossRefGoogle Scholar
  15. 15.
    Li S, Liu Z, Li J, Chen A, Chai Y, Yuan R, Ying Z (2018) Enzyme-free target recycling and double-output amplification system for Electrochemiluminescent assay of mucin 1 with MoS2 Nanoflowers as co-reaction accelerator. ACS Appl Mater Interfaces 10:14483–14490CrossRefGoogle Scholar
  16. 16.
    Naghshbandi Z, Arsalani N, Zakerhamidi MS, Geckeler KE (2018) A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M= Ni, co) nanocomposites for catalytic application. Appl Surf Sci 443:484–491CrossRefGoogle Scholar
  17. 17.
    Wang B, Li C, He B, Qi J, Liang C (2017) Highly stable and selective Ru/NiFe2O4 catalysts for transfer hydrogenation of biomass-derived furfural to 2-methylfuran. Journal of Energy Chemistry.4:799–807Google Scholar
  18. 18.
    Fang D, Pan M, Yi H, Dai H, Hong Z, Zheng X, Lin Y (2019) Enhanced electrochemiluminescence of luminol-DBAE system based on self-assembled mesocrystalline hybrid for the detection of ovarian cancer marker. Sensors Actuators B Chem 286:608–615CrossRefGoogle Scholar
  19. 19.
    Ahn K, Pham-Cong D, Choi HS, Jeong SY, Jin HC, Kim J, Kim JP, Bae JS, Cho CR (2016) Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers: synthesis, properties, and their photocatalytic mechanism. Curr Appl Phys 16:251–260CrossRefGoogle Scholar
  20. 20.
    Ren H, Ding Y, Yong J, Fu X, Long Z, Ping Z (2009) Synthesis and properties of ZnO nanofibers prepared by electrospinning. J Sol-Gel Sci Technol 52:287–290CrossRefGoogle Scholar
  21. 21.
    Nasr M, Balme S, Eid C, Habchi R, Bechelany M (2018) Enhanced visible-light photocatalytic performance of electrospun rGO/TiO2 composite nanofibers. J Phys Chem C 121:261–269CrossRefGoogle Scholar
  22. 22.
    Liu C, Wei X, Tu Y (2013) Development of a reagentless electrochemiluminescent electrode for flow injection analysis using copolymerised luminol/aniline on nano-TiO2 functionalised indium-tin oxide glass. Talanta 111:156–162CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Xu M, Liu L, Ruan X, Yan J, Zhao W, Yun J, Wang Y, Qin S, Zhang T (2018) Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sensors Actuators B Chem 257:714–727CrossRefGoogle Scholar
  24. 24.
    Zhou K, Kang M, He X, Hong Z, Huang Z, Wei M (2017) Multi-functional gum arabic binder for NiFe2O4 nanotubes anodes enabling excellent Li/Na-ion storage performance. J Mater Chem A 5:18138–18147CrossRefGoogle Scholar
  25. 25.
    Zheng H, Ke Y, Yi H, Dai H, Fang D, Lin Y, Hong Z, Li X (2019) A bifunctional reagent regulated ratiometric electrochemiluminescence biosensor constructed on surfactant-assisted synthesis of TiO2 mesocrystals for the sensing of deoxynivalenol. Talanta 196:600–607CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Material & College of Physics and Energy Fujian Normal UniversityFuzhouChina
  2. 2.Fujian Provincial Maternity and Children’s HospitalFuzhouChina
  3. 3.Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, and Department of ChemistryFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations