Microchimica Acta

, 186:606 | Cite as

An electrochemiluminescence immunosensor for the N-terminal brain natriuretic peptide based on the high quenching ability of polydopamine

  • Yanhua Zhao
  • Li Li
  • Lulin Hu
  • Yong Zhang
  • Dan Wu
  • Hongmin MaEmail author
  • Qin Wei
Original Paper


A sandwich-type electrochemiluminescence (ECL) immunosensor for the N-terminal brain natriuretic peptide (NT-proBNP) is described. The assay is based on the quenching of the ECL of graphite-like carbon nitride (g-C3N4) by polydopamine (PDA). Two-dimensional g-C3N4 is grown in-situ on titanium dioxide nanoflowers (TiO2 NFs). The macroporous structure of the NFs enhances the interfacial stability of g-C3N4, and also promotes the ECL reaction of g-C3N4 with the co-reactant. The introduction of gold nanoparticles into the matrix further enhances the ECL and facilitates the immobilization of capture antibodies. The nanoquencher used to label the secondary antibody is synthesized by catalytic polymerization of dopamine in the presence of bimetallic NiPd nanoparticles. The nanoquencher preserves the high reactivity of polydopamine and quenches the ECL of the g-C3N4/TiO2 system. Compared to other methods, the detection limit for NT-proBNP is decreased to 50 fg∙mL−1.

Graphical abstract

Schematic presentation of the electrochemiluminescence (ECL) process of the immunosensor: titanium dioxide nanoflowers@graphite-like carbon nitride-gold nanoparticles (TiO2 NFs@g-C3N4-Au) as luminophor, and polydopamine (PDA) as nanoquencher.


Nickel-palladium nanoparticles Biosensor Titanium dioxide nanoflowers Catalytic polymerization Carbon nitride Heart failure biomarker 



This work is supported by the National Natural Science Foundation of China (21675063, 21575050), the National Key Scientific Instrument and Equipment Development Project of China (No. 21627809), the Science and Technology Planning Project of Higher Education of Shandong Province (J16LC23), the Taishan Scholar Foundation of Shandong Province (Grant No. ts20130937).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3709_MOESM1_ESM.doc (959 kb)
ESM 1 (DOC 959 kb)


  1. 1.
    Liang W, Li Y, Zhang B, Zhang Z, Chen A, Qi D, Yi W, Hu C (2012) A novel microfluidic immunoassay system based on electrochemical immunosensors: an application for the detection of NT-proBNP in whole blood. Biosens Bioelectron 31(1):480–485CrossRefGoogle Scholar
  2. 2.
    Teramura Y, Arima Y, Iwata H (2006) Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification. Anal Biochem 357(2):208–215CrossRefGoogle Scholar
  3. 3.
    He Y, Wang Y, Yang X, Xie S, Yuan R, Chai Y (2016) Metal organic frameworks combining CoFe2O4 magnetic nanoparticles as highly efficient SERS sensing platform for ultrasensitive detection of N-terminal pro-brain natriuretic peptide. ACS Appl Mater Interfaces 8(12):7683–7690CrossRefGoogle Scholar
  4. 4.
    Ding YD, Lei JY, Chen Y, Jin J (2010) A sandwich ELISA for assessment of pharmacokinetics of HSA-(BNP) fusion protein in mouse plasma. J Pharm Biomed Anal 51(3):658–663CrossRefGoogle Scholar
  5. 5.
    Feng Y, Feng S, Wang N, Lei J, Ju H (2017) Ru(bpy)3 2+ incorporated luminescent polymer dots: double-enhanced electrochemiluminescence for detection of single-nucleotide polymorphism. Anal Chem 89(14):7659–7666CrossRefGoogle Scholar
  6. 6.
    Jiang X, Wang H, Wang H, Zhuo Y, Yuan R, Chai Y (2016) Self-enhanced N-(aminobutyl)-N-(ethylisoluminol) derivative-based electrochemiluminescence immunosensor for sensitive laminin detection using PdIr cubes as a mimic peroxidase. Nanoscale 8(15):8017–8023CrossRefGoogle Scholar
  7. 7.
    Yang X, Yu YQ, Peng LZ, Lei YM, Chai YQ, Yuan R, Zhuo Y (2018) Strong electrochemiluminescence from MOFs accelerator enriched quantum dots for enhancing sensing of trace cTnI. Analy Chem 90(6):3995–4002CrossRefGoogle Scholar
  8. 8.
    Chen Y, Zhou S, Li L, Zhu JJ (2017) Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 12:98–115CrossRefGoogle Scholar
  9. 9.
    Li X, Zhou Y, Xu Y, Xu H, Wang M, Yin H, Ai S (2016) A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride. Anal Chim Acta 934:36–43CrossRefGoogle Scholar
  10. 10.
    Chen W, Yao X, Zhou X, Zhao K, Deng A, Li J (2018) Electrochemiluminescence based competitive immunoassay for Sudan I by using gold-functionalized graphitic carbon nitride and Au/Cu alloy nanoflowers. Microchim Acta 185(5):275CrossRefGoogle Scholar
  11. 11.
    Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2012) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135(1):18–21CrossRefGoogle Scholar
  12. 12.
    Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet–MnO2 sandwich nanocomposite. Anal Chem 86(7):3426–3434CrossRefGoogle Scholar
  13. 13.
    Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim DH, Chen G (2014) Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem 86(9):4188–4195CrossRefGoogle Scholar
  14. 14.
    Cao HX, Wang L, Pan CG, He YS, Liang GX (2018) Aptamer based electrochemiluminescent determination of bisphenol a by using carboxylated graphitic carbon nitride. Microchim Acta 185(10):463CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Liu Y, Li X, Wang H, Zhang Y, Ma H, Wei Q (2018) Label-free ECL immunosensor for the early diagnosis of rheumatoid arthritis based on asymmetric heterogeneous polyaniline-gold nanomaterial. Sensors Actuators B Chem 257:354–361CrossRefGoogle Scholar
  16. 16.
    Su Y, Yang S, Liu W, Qiao L, Yan J, Liu Y, Zhang S, Fang Y Visible light photoelectrochemical sulfide sensor based the use of TiO2 nanotube arrays loaded with Cu2O. Microchim Acta 184(10):4065–4072Google Scholar
  17. 17.
    Thamima M, Karuppuchamy S (2016) Synthesis, characterization and photocatalytic properties of rod-shaped titanium dioxide. J Mater Sci Mater Electron 27(1):458–465CrossRefGoogle Scholar
  18. 18.
    Lui G, Liao JY, Duan A, Zhang Z, Fowler M, Yu A (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1(39):12255–12262CrossRefGoogle Scholar
  19. 19.
    Ma H, Zhao Y, Liu Y, Zhang Y, Wu D, Li H, Wei Q (2017) A compatible sensitivity enhancement strategy for electrochemiluminescence immunosensors based on the biomimetic melanin-like deposition. Anal Chem 89(24):13049–13053CrossRefGoogle Scholar
  20. 20.
    Fan D, Zhu X, Zhai Q, Wang E, Dong S (2016) Polydopamine nanotubes as an effective fluorescent quencher for highly sensitive and selective detection of biomolecules assisted with exonuclease III amplification. Anal Chem 88(18):9158–9165CrossRefGoogle Scholar
  21. 21.
    Xue H, Zhao J, Zhou Q, Pan D, Zhang Y, Zhang Y, Shen Y (2019) Boosting the sensitivity of a photoelectrochemical immunoassay by using SiO2@polydopamine core-shell nanoparticles as a highly efficient quencher. ACS Appl Nano Mater 2:1579–1588CrossRefGoogle Scholar
  22. 22.
    Liu Y, Zhao Y, Fan Q, Khan MS, Li X, Zhang Y, Ma H, Wei Q (2018) Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres. Microchim Acta 185(2):85CrossRefGoogle Scholar
  23. 23.
    Li H, Du W, Jiao L, Chen L, Ran B, Dong M, Qian Z (2017) Ultrasensitive simultaneous electrochemical immunoassay of acute myocardial infarction biomarkers using metal ion chelated polydopamine nanospheres. J Biomed Nanotechnol 13(10):1235–1242CrossRefGoogle Scholar
  24. 24.
    Lai Y, Zhang C, Deng Y, Yang G, Li S, Tang C, He N (2019) A novel α-fetoprotein-MIP immunosensor based on AuNPs/PTh modified glass carbon electrode. Chin Chem Lett 30(1):160–162CrossRefGoogle Scholar
  25. 25.
    Li J, Baird MA, Davis MA, Tai W, Zweifel LS, Waldorf KMA, Jr MG, Rajagopal L, Pierce RH, Gao X (2017) Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nat Biomed Eng 1(6):0082CrossRefGoogle Scholar
  26. 26.
    Wang Q, Zhang L, Shang C, Zhang Z, Dong S (2016) Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem Commun 52(31):5410–5413CrossRefGoogle Scholar
  27. 27.
    Cheng C, Huang Y, Tian X, Zheng B, Li Y, Yuan H, Xiao D, Xie S, Choi MMF, Chem A (2012) Electrogenerated chemiluminescence behavior of graphite-like carbon nitride and its application in selective sensing Cu2+. Anal Chem 84(11):4754–4759CrossRefGoogle Scholar
  28. 28.
    Zhai Q, Li J, Wang E (2017) Recent advances based on nanomaterials as electrochemiluminescence probes for the fabrication of sensors. Chemelectrochem 4(7):1639–1650CrossRefGoogle Scholar
  29. 29.
    Serafín V, Torrenterodríguez RM, Gonzálezcortés A, García PDF, Sabaté M, Campuzano S, Yáñezsedeño P, Pingarrón JM (2018) An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta 179:131–138CrossRefGoogle Scholar
  30. 30.
    Feng J, Li F, Li X, Wang Y, Fan D, Du B, Li Y, Wei Q (2018) Label-free photoelectrochemical immunosensor for NT-proBNP detection based on La-CdS/3D ZnIn2S4/au@ZnO sensitization structure. Biosens Bioelectron 117:773–780CrossRefGoogle Scholar
  31. 31.
    Fan D, Bao C, Liu X, Wu D, Zhang Y, Wang H, Du B, Wei Q (2018) A novel label-free photoelectrochemical immunosensor based on NCQDs and Bi2S3 co-sensitized hierarchical mesoporous SnO2 microflowers for detection of NT-proBNP. J Mater Chem B 6(46):7634–7642CrossRefGoogle Scholar
  32. 32.
    Zhang H, Han Z, Wang X, Li F, Cui H, Yang D, Bian Z (2015) Sensitive immunosensor for N-terminal pro-brain natriuretic peptide based on N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanodots/multiwalled carbon nanotube electrochemiluminescence nanointerface. ACS Appl Mater Interfaces 7(14):7599–7604CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Yanhua Zhao
    • 1
  • Li Li
    • 1
  • Lulin Hu
    • 1
  • Yong Zhang
    • 1
  • Dan Wu
    • 1
  • Hongmin Ma
    • 1
    Email author
  • Qin Wei
    • 1
  1. 1.Key Laboratory of Interface Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical EngineeringUniversity of JinanJinanChina

Personalised recommendations