Advertisement

Microchimica Acta

, 186:595 | Cite as

Voltammetric determination of nitrite by using a multiwalled carbon nanotube paste electrode modified with chitosan-functionalized silver nanoparticles

  • Sania Bibi
  • Muhammad Iqbal Zaman
  • Abdul Niaz
  • Abdur RahimEmail author
  • Mohsan Nawaz
  • Muhammad Bilal Arian
Original Paper

Abstract

A cyclic voltammetric method is described for the determination of nitrite by using a multiwalled carbon nanotube paste electrode (MWCNT) that was modified with chitosan-functionalized silver nanoparticles (Chit-AgNPs). The AgNPs were prepared by one step procedure using chitosan as stabilizing agent. The resulting modified AgNPs were drop-coated onto the electrode. By combining the advantages of chitosan, AgNPs (in the form of Chit-AgNPs) and MWCNT, the assay exhibits a remarkable improvement in the cyclic voltammetric response towards the oxidation of nitrite at a typical peak potential of 0.81 V (vs. SCE) in buffer of pH 4.0. The accumulation of nitrite on the electrode also was achieved, and this further enhances the analytical sensitivity. Under optimized conditions, the oxidation peak current increases linearly in the 100 nM to 50 μM nitrite concentration range, and the detection limit is 30 nM. The method has high selectivity for nitrite even in the presence of other potentially interfering ions.

Graphical abstract

Schematic illustration of the prepared chitosan functionalized silver nanoparticles (transmission electron microscope image) and modification of multi-walled carbon nanotube paste electrode with chitosan functionalized silver nanoparticles for the electrochemical oxidation of nitrite to nitrate.

Keywords

Chitosan Functionalized silver nanoparticles Modified carbon nanotubes paste electrode Nitrite assay Cyclic voltammetry River water 

Notes

Acknowledgements

The financial support from the project “Pak-US No6-4/PAK-US/HEC/2015/04” is highly acknowledged.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3699_MOESM1_ESM.docx (45 kb)
ESM 1 (DOCX 45 kb)

References

  1. 1.
    Wang G, Han R, Feng X, Li Y, Lin J, Luo X (2017) A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184(6):1721–1727.  https://doi.org/10.1007/s00604-017-2180-9 CrossRefGoogle Scholar
  2. 2.
    Liu Y, Xue H, Liu J, Wang Q, Wang L (2018) Carbon quantum dot-based fluorometric nitrite assay by exploiting the oxidation of iron(II) to iron(III). Microchim Acta 185(2):129.  https://doi.org/10.1007/s00604-018-2668-y CrossRefGoogle Scholar
  3. 3.
    Ezhil Vilian AT, Dinesh B, Muruganantham R, Choe SR, Kang S-M, Huh YS, Han Y-K (2017) A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Microchim Acta 184(12):4793–4801.  https://doi.org/10.1007/s00604-017-2513-8 CrossRefGoogle Scholar
  4. 4.
    Chen L, Liu X, Wang C, Lv S, Chen C (2017) Amperometric nitrite sensor based on a glassy carbon electrode modified with electrodeposited poly(3,4-ethylenedioxythiophene) doped with a polyacenic semiconductor. Microchim Acta 184(7):2073–2079.  https://doi.org/10.1007/s00604-017-2189-0 CrossRefGoogle Scholar
  5. 5.
    Xu G, Liang S, Fan J, Sheng G, Luo X (2016) Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host. Microchim Acta 183(6):2031–2037.  https://doi.org/10.1007/s00604-016-1842-3 CrossRefGoogle Scholar
  6. 6.
    Wang J, Zhou H, Fan D, Zhao D, Xu C (2015) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182(5):1055–1061.  https://doi.org/10.1007/s00604-014-1432-1 CrossRefGoogle Scholar
  7. 7.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342CrossRefGoogle Scholar
  8. 8.
    Merusi C, Corradini C, Cavazza A, Borromei C, Salvadeo P (2010) Determination of nitrates, nitrites and oxalates in food products by capillary electrophoresis with pH-dependent electroosmotic flow reversal. Food Chem 120(2):615–620CrossRefGoogle Scholar
  9. 9.
    Wang Q-H, Yu L-J, Liu Y, Lin L, Lu R-g, Zhu J-p, He L, Lu Z-L (2017) Methods for the detection and determination of nitrite and nitrate: a review. Talanta 165:709–720CrossRefGoogle Scholar
  10. 10.
    Von Gunten U, Salhi E (1999) Simultaneous determination of bromide, bromate and nitrite in low mu g 1 (−1) levels by ion chromatography without sample pretreatment. Water research 33 (EPFL-ARTICLE-167332):3239-3244Google Scholar
  11. 11.
    Nagababu E, Rifkind JM (2007) Measurement of plasma nitrite by chemiluminescence without interference of S-, N-nitroso and nitrated species. Free Radic Biol Med 42(8):1146–1154CrossRefGoogle Scholar
  12. 12.
    Pourreza N, Fat'hi MR, Hatami A (2012) Indirect cloud point extraction and spectrophotometric determination of nitrite in water and meat products. Microchem J 104:22–25CrossRefGoogle Scholar
  13. 13.
    Jiao M, Li Z, Li Y, Cui M, Luo X (2018) Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Microchim Acta 185(5):249.  https://doi.org/10.1007/s00604-018-2784-8 CrossRefGoogle Scholar
  14. 14.
    Annalakshmi M, Balasubramanian P, Chen S-M, Chen T-W (2019) Amperometric sensing of nitrite at nanomolar concentrations by using carboxylated multiwalled carbon nanotubes modified with titanium nitride nanoparticles. Microchim Acta 186(1):8CrossRefGoogle Scholar
  15. 15.
    Zhang F, Yuan Y, Zheng Y, Wang H, Liu T, Hou S (2017) A glassy carbon electrode modified with gold nanoparticle-encapsulated graphene oxide hollow microspheres for voltammetric sensing of nitrite. Microchim Acta 184(6):1565–1572.  https://doi.org/10.1007/s00604-017-2264-6 CrossRefGoogle Scholar
  16. 16.
    Wang J, Hui N (2017) A nanocomposite consisting of flower-like cobalt nanostructures, graphene oxide and polypyrrole for amperometric sensing of nitrite. Microchim Acta 184(7):2411–2418.  https://doi.org/10.1007/s00604-017-2247-7 CrossRefGoogle Scholar
  17. 17.
    Li J, Lin X (2007) Electrocatalytic reduction of nitrite at polypyrrole nanowire–platinum nanocluster modified glassy carbon electrode. Microchem J 87(1):41–46CrossRefGoogle Scholar
  18. 18.
    Dai J, Deng D, Yuan Y, Zhang J, Deng F, He S (2016) Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Microchim Acta 183(5):1553–1561.  https://doi.org/10.1007/s00604-016-1773-z CrossRefGoogle Scholar
  19. 19.
    Wu W, Li Y, Jin J, Wu H, Wang S, Ding Y, Ou J (2016) Sensing nitrite with a glassy carbon electrode modified with a three-dimensional network consisting of Ni7S6 and multi-walled carbon nanotubes. Microchim Acta 183(12):3159–3166.  https://doi.org/10.1007/s00604-016-1961-x CrossRefGoogle Scholar
  20. 20.
    Tkachenko O, Rahim A, Baraban A, Sukhov R, Khristenko I, Gushikem Y, Kholin Y (2013) Hybrid silica-organic material with immobilized amino groups: surface probing and use for electrochemical determination of nitrite ions. J Sol-Gel Sci Technol 67(1):145–154CrossRefGoogle Scholar
  21. 21.
    Rahim A, Santos LS, Barros SB, Kubota LT, Landers R, Gushikem Y (2014) Electrochemical detection of nitrite in meat and water samples using a mesoporous carbon ceramic SiO2/C electrode modified with in situ generated manganese (II) phthalocyanine. Electroanalysis 26(3):541–547CrossRefGoogle Scholar
  22. 22.
    Hu J, Guo F, Wang L (2017) Voltammetric determination of nitrite by using a glassy carbon electrode modified with a self-assembled nanocomposite prepared from CdTe quantum dots, cetyltrimethylammonium bromide, chitosan and multiwalled carbon nanotubes. Microchim Acta 184(12):4637–4646.  https://doi.org/10.1007/s00604-017-2500-0 CrossRefGoogle Scholar
  23. 23.
    Jiang L, Wang R, Li X, Jiang L, Lu G (2005) Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode. Electrochem Commun 7(6):597–601CrossRefGoogle Scholar
  24. 24.
    Lin P, Chai F, Zhang R, Xu G, Fan X, Luo X (2016) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183(3):1235–1241.  https://doi.org/10.1007/s00604-016-1751-5 CrossRefGoogle Scholar
  25. 25.
    Wang Q, Yun Y (2012) A nanomaterial composed of cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) and graphene with high electrocatalytic activity for nitrite oxidation. Microchim Acta 177(3):411–418.  https://doi.org/10.1007/s00604-012-0794-5 CrossRefGoogle Scholar
  26. 26.
    Pal M, Ganesan V (2010) Electrochemical determination of nitrite using silver nanoparticles modified electrode. Analyst 135(10):2711–2716CrossRefGoogle Scholar
  27. 27.
    Yang S, Liu X, Zeng X, Xia B, Gu J, Luo S, Mai N, Wei W (2010) Fabrication of nano-copper/carbon nanotubes/chitosan film by one-step electrodeposition and its sensitive determination of nitrite. Sensors Actuators B Chem 145(2):762–768CrossRefGoogle Scholar
  28. 28.
    Mo R, Wang X, Yuan Q, Yan X, Su T, Feng Y, Lv L, Zhou C, Hong P, Sun S (2018) Electrochemical determination of nitrite by au nanoparticle/graphene-chitosan modified electrode. Sensors 18(7):1986CrossRefGoogle Scholar
  29. 29.
    Amanulla B, Palanisamy S, Chen S-M, Chiu T-W, Velusamy V, Hall JM, Chen T-W, Ramaraj SK (2017) Selective colorimetric detection of nitrite in water using chitosan stabilized gold nanoparticles decorated reduced graphene oxide. Sci Rep 7(1):14182CrossRefGoogle Scholar
  30. 30.
    Osorio A, Silveira I, Bueno V, Bergmann C (2008) H2SO4/HNO3/HCl—functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl Surf Sci 255(5):2485–2489CrossRefGoogle Scholar
  31. 31.
    Afkhami A, Soltani-Felehgari F, Madrakian T, Ghaedi H (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379–385CrossRefGoogle Scholar
  32. 32.
    Habib IH (2011) Anodic stripping Voltammetric determination of nitrite using carbon paste electrode modified with chitosan. Am J Anal Chem 2(02):284–288CrossRefGoogle Scholar
  33. 33.
    Zhang S, Li B, Sheng Q, Zheng J (2016) Electrochemical sensor for sensitive determination of nitrite based on the CuS–MWCNT nanocomposites. J Electroanal Chem 769:118–123CrossRefGoogle Scholar
  34. 34.
    Gobelli D, Mariano Correa N, Fátima Barroso M, Moyano F, Molina PG (2015) “Green electrodes” modified with au nanoparticles synthesized in glycerol, as electrochemical nitrite sensor. Electroanalysis 27(8):1883–1891CrossRefGoogle Scholar
  35. 35.
    Wen Z-H, Kang T-F (2004) Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta 62(2):351–355CrossRefGoogle Scholar
  36. 36.
    Ye D, Luo L, Ding Y, Chen Q, Liu X (2011) A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst 136(21):4563–4569CrossRefGoogle Scholar
  37. 37.
    Zhu N, Xu Q, Li S, Gao H (2009) Electrochemical determination of nitrite based on poly (amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation. Electrochem Commun 11(12):2308–2311CrossRefGoogle Scholar
  38. 38.
    Ce Z, Yang B, Bin D, Wang J, Li S, Yang P, Wang C, Shiraishi Y, Du Y (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci 488:135–141CrossRefGoogle Scholar
  39. 39.
    Mehmeti E, Stanković DM, Hajrizi A, Kalcher K (2016) The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination. Talanta 159:34–39CrossRefGoogle Scholar
  40. 40.
    Wang Z, Liao F, Guo T, Yang S, Zeng C (2012) Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. J Electroanal Chem 664:135–138CrossRefGoogle Scholar
  41. 41.
    Mani V, Periasamy AP, Chen S-M (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science & technologyBannuPakistan
  2. 2.Interdisciplinary Research Centre in Biomedical Materials (IRCBM)COMSATS University IslamabadLahorePakistan
  3. 3.Department of ChemistryHazara UniversityMansehraPakistan
  4. 4.Department of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations