Microchimica Acta

, 186:607 | Cite as

A molybdenum disulfide@Methylene Blue nanohybrid for electrochemical determination of microRNA-21, dopamine and uric acid

  • Shao Su
  • Qing Hao
  • Zhongyuan Yan
  • Ruimin Dong
  • Rui Yang
  • Dan Zhu
  • Jie Chao
  • Yi ZhouEmail author
  • Lianhui WangEmail author
Original Paper


Development of novel nanomaterials for biosensors has intrigued widespread interest. Here, we report a method to graft the redox-active dye Methylene Blue (MB) onto molybdenum disulfide (MoS2) nanosheet surface via electrostatic and π-stacking interaction. The adsorption of MB on nanosheets was investigated by atomic force microscopy (AFM), which proved that the adsorption isotherm fits a Temkin not a Langmuir model. After studying the electrochemical properties of MB-decorated MoS2 nanocomposite (MoS2@MB) on a glassy carbon electrode (GCE), an electrochemical sensor for microRNA-21 detection was designed. The modified GCE can quantify microRNA-21 in concentrations as low as 68 fM, typically at a working potential of −0.28 V (vs. SCE). The same modified electrode also shows outstanding electrocatalytic ability towards individual and simultaneous determination of dopamine (DA) and uric acid (UA) with electrochemical peaks at 0.16 V (DA) and 0.45 V (UA). The detection limits for simultaneous determination are 0.58 μM for DA and 0.91 μM for UA, respectively.

Graphical abstract

A powerful sensing electrode was obtained by grafting Methylene Blue (MB) on molybdenum disulfide (MoS2@MB) nanosheet surface. Such MoS2@MB-based electrochemical sensor was used to label-free detect microRNA and simultaneously determine dopamine and uric acid.


Methylene blue Molybdenum disulfide Sensing material Label-free MicroRNA-21 Dopamine Uric acid 



This work was financially supported by the National Key Research and Development Program of China (2017YFA0205302), the National Natural Science Foundation of China (61671250, 21475064 and 61771253), the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R37), the Key Research and Development Program of Jiangsu (BE2018732), the Natural Science Key Fund for Colleges and Universities in Jiangsu Province (17KJA430011), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY 218032) and CAS Key Laboratory of Interfacial Physics and Technology (CASKL-IPT1701).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3678_MOESM1_ESM.doc (4.1 mb)
ESM 1 (DOC 4.05 mb)


  1. 1.
    Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135(16):5998–6001. CrossRefPubMedGoogle Scholar
  2. 2.
    Zeng ZY, Sun T, Zhu JX, Huang X, Yin ZY, Lu G, Fan ZX, Yan QY, Hng HH, Zhang H (2012) An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew Chem Int Ed 51(36):9052–9056. CrossRefGoogle Scholar
  3. 3.
    Yang X, Li J, Liang T, Ma CY, Zhang YY, Chen HZ, Hanagata N, Su HX, Xu MS (2014) Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6:10126–10133. CrossRefPubMedGoogle Scholar
  4. 4.
    Yadav V, Roy S, Singh P, Khan Z, Jaiswal A (2019) 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small 15(1):1803706. CrossRefGoogle Scholar
  5. 5.
    Tan CL, Zhang H (2015) Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev 44:2713–2731. CrossRefPubMedGoogle Scholar
  6. 6.
    Yang F, Zuo XL, Li ZH, Deng WP, Shi JY, Zhang GJ, Huang Q, Song SP, Fan CH (2014) A bubble-mediated intelligent microscale electrochemical device for single-step quantitative bioassays. Adv Mater 26(27):4671–4676. CrossRefPubMedGoogle Scholar
  7. 7.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. CrossRefPubMedGoogle Scholar
  8. 8.
    Stergiou A, Tagmatarchis N (2018) Molecular functionalization of two-dimensional MoS2 nanosheets. Chem-Eur J 24(69):18246–18257. CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao YN, Zhou J, Jia ZM, Huo DQ, Liu QY, Zhong DQ, Hu Y, Yang M, Bian MH, Hou CJ (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92–102. CrossRefGoogle Scholar
  10. 10.
    Sun HF, Chao J, Zuo XL, Su S, Liu XF, Yuwen LH, Fan CH, Wang LH (2014) Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4:27625–27629. CrossRefGoogle Scholar
  11. 11.
    Yang T, Chen MJ, Kong QQ, Luo XL, Jiao K (2017) Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens Bioelectron 89:538–544. CrossRefPubMedGoogle Scholar
  12. 12.
    Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens FHL, Konstantatos G (2015) Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv Mater 27(1):176–180. CrossRefPubMedGoogle Scholar
  13. 13.
    Wang TY, Zhu RZ, Zhuo JQ, Zhu ZW, Shao YY, Li MX (2014) Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors. Anal Chem 86(24):12064–12069. CrossRefPubMedGoogle Scholar
  14. 14.
    Chang K, Chen WX (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5(6):4720–4728. CrossRefPubMedGoogle Scholar
  15. 15.
    Yang T, Chen HY, Jing CJ, Luo SZ, Li WH, Jiao K (2017) Using poly (m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sensor Actuat B-Chem 249:451–457. CrossRefGoogle Scholar
  16. 16.
    Su S, Sun HF, Xu F, Yuwen LH, Fan CH, Wang LH (2014) Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchim Acta 181(13–14):1497–1503. CrossRefGoogle Scholar
  17. 17.
    Su S, Sun HF, Cao WF, Chao J, Peng HZ, Zuo XL, Yuwen LH, Fan CH, Wang LH (2016) Dual-target electrochemical biosensing based on DNA structural switching on gold nanoparticle-decorated MoS2 nanosheets. ACS Appl Mater Interfaces 8(11):6826–6833. CrossRefPubMedGoogle Scholar
  18. 18.
    Su S, Cao WF, Liu W, Lu ZW, Zhu D, Chao J, Weng LX, Wang LH, Fan CH, Wang LH (2017) Dual-mode electrochemical analysis of microRNA-21 using gold nanoparticle-decorated MoS2 nanosheet. Biosens Bioelectron 94:552–559. CrossRefPubMedGoogle Scholar
  19. 19.
    Wang X, Ma WQ, Ge T, Yang T, Jiao K (2016) A reductively treated thin layer MoS2 nanosheet-poly (xanthurenic acid) composite with dramatically enhanced electrochemical performance and extended sensing applications. Electrochim Acta 190:1025–1031. CrossRefGoogle Scholar
  20. 20.
    Wang X, Nan FX, Zhao JL, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391. CrossRefPubMedGoogle Scholar
  21. 21.
    Yang T, Cui YN, Chen MJ, Yu RZ, Luo SZ, Li WH, Jiao K (2017) Uniform and vertically oriented ZnO nanosheets based on thin-layered MoS2: synthesis and high-sensing ability. ACS Sustain Chem Eng 5(2):1332–1338. CrossRefGoogle Scholar
  22. 22.
    Erdem A, Kerman K, Meric B, Akarca US, Ozsoz M (2000) Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Anal Chim Acta 422(2):139–149. CrossRefGoogle Scholar
  23. 23.
    Yan YM, Zhang MN, Gong KP, Su L, Guo ZX, Mao LQ (2005) Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem Mater 17(13):3457–3463. CrossRefGoogle Scholar
  24. 24.
    Wang D, Li YG, Hasin P, Wu YY (2011) Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. Nano Res 4(1):124–130. CrossRefGoogle Scholar
  25. 25.
    Kong DB, Zheng XY, Tao Y, Lv W, Gao Y, Zhi LJ, Yang QH (2016) Porous graphene oxide-based carbon artefact with high capacity for methylene blue adsorption. Adsorption 22(8):1043–1050. CrossRefGoogle Scholar
  26. 26.
    Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su XG (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546. CrossRefPubMedGoogle Scholar
  27. 27.
    Yuwen LH, Xu F, Xue B, Luo ZM, Zhang Q, Bao BQ, Su S, Weng LX, Huang W, Wang LH (2014) General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 6:5762–5769. CrossRefPubMedGoogle Scholar
  28. 28.
    Yuwen LH, Yu H, Yang XY, Zhou JJ, Zhang Q, Zhang YQ, Luo ZM, Su S, Wang LH (2016) Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation. Chem Commun 52:529–532. CrossRefGoogle Scholar
  29. 29.
    Kaito R, Kuroda K, Ogawa M (2003) Unidirectional orientation of methylene blue intercalated in K4Nb6O17 single crystal. J Phys Chem B 107(17):4043–4047. CrossRefGoogle Scholar
  30. 30.
    Liu G, Chen HD, Peng HZ, Song SP, Gao JM, Lu JX, Ding M, Li LY, Ren SZ, Zou ZL, Fan CH (2011) A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. Biosens Bioelectron 28(1):308–313. CrossRefPubMedGoogle Scholar
  31. 31.
    Fan CH, Zhuang Y, Li GX, Zhu JQ, Zhu DX (2000) Direct electrochemistry and enhanced catalytic activity for hemoglobin in a sodium montmorillonite film. Electroanalysis 12(14):1156-1158.<1156::AID-ELAN1156>3.0.CO;2-4 CrossRefGoogle Scholar
  32. 32.
    Lin MH, Wang JJ, Zhou GB, Wang JB, Wu N, Lu JX, Gao JM, Chen XQ, Shi JY, Zuo XL, Fan CH (2015) Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew Chem Int Ed 54(7):2151–2155. CrossRefGoogle Scholar
  33. 33.
    Li J, Song SP, Liu XF, Wang L, Pan D, Huang Q, Zhao Y, Fan CH (2008) Enzyme-based multi-component optical nanoprobes for sequence-specific detection of DNA hybridization. Adv Mater 20(3):497–500. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.College of Basic MedicineChengdu University of Traditional Chinese MedicineChengduChina

Personalised recommendations