Advertisement

Microchimica Acta

, 186:602 | Cite as

A nickel foam modified with electrodeposited cobalt and phosphor for amperometric determination of dopamine

  • You Tao
  • Quan Kong
  • Zeming Tao
  • Jixiang Duan
  • Hongtao Guan
  • Gang ChenEmail author
  • Chengjun DongEmail author
Original Paper
  • 131 Downloads

Abstract

Considering the importance of dopamine (DA) detection for neuroscience and disease diagnosis, herein, an electrochemical sensor for dopamine is described. It is based on the use of a Ni-Co-P nanostructure fabricated on nickel foam via electrode position from cobalt chloride and ammonium phosphate for 10 min. Time-dependent experiments show the transformation of Ni-Co-P nanoparticles to spheres. The resulting electrode display excellent electrochemical response to DA. Figures of merit include (a) a working potential of 0.55 V (vs. Ag/AgCl); (b) an electrochemical sensitivity of 5262 μA mM−1 cm−2; (c) a wide linear range (from 0.5 to 2350 μM), and (d) a 1 μM detection limit. The outstanding electrochemical performance is explained by the synergistic effects of large surface area, improved electron transfer, presence of free binders, and the presence of three active components (nickel, cobalt and phosphonium ion).

Graphical abstract

A Ni-Co-P nanostructure was electrodeposited on nickel foam to obtain an electrochemical sensor for amperometric determination of dopamine with outstanding performance.

Keywords

Electrodeposition Ni-co-P Nanostructure Nickel foam Evolution Electrochemical assay Sensor Dopamine Sensitivity Synergistic effects 

Notes

Acknowledgements

All authors thank the financial support from the Natural Science Foundation of China (Grant number 11564042) and the project of the Department of Science and Technology of Yunnan Province (2018FB091).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3673_MOESM1_ESM.doc (3.6 mb)
ESM 1 (DOC 3.59 mb)

References

  1. 1.
    Ankireddy SR, Kim J (2015) Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots. Int J Nanomedicine 10:113–119PubMedPubMedCentralGoogle Scholar
  2. 2.
    Berke JD (2018) What does dopamine mean? Nat Neurosci 21:787–793CrossRefGoogle Scholar
  3. 3.
    Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim K (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369CrossRefGoogle Scholar
  4. 4.
    Kim BK, Son S, Lee K, Yang H, Kwak J (2012) Dopamine detection using the selective and spontaneous formation of Electrocatalytic poly(dopamine) films on indium-tin oxide electrodes. Electroanal 24:993–996CrossRefGoogle Scholar
  5. 5.
    Zachek MK, Hermans A, Wightman RM, McCarty GS (2008) Electrochemical dopamine detection: comparing gold and carbon fiber microelectrodes using background subtracted fast scan cyclic voltammetry. J Electroanal Chem 614:113–120CrossRefGoogle Scholar
  6. 6.
    Divagar M, Sriramprabha R, Ponpandian N, Viswanathan C (2018) Highly selective and sensitive electrochemical detection of dopamine with hydrothermally prepared β-MnO2 nanostructures. Mater Sci Semicond Process 83:216–223CrossRefGoogle Scholar
  7. 7.
    Lin J, Huang B, Dai Y, Wei J, Chen Y (2018) Chiral ZnO nanoparticles for detection of dopamine. Mat Sci Eng C-Mater 93:739–745CrossRefGoogle Scholar
  8. 8.
    Du C, Yang L, Yang F, Cheng G, Luo W (2017) Nest-like NiCoP for highly efficient overall water splitting. ACS Catal 7:4131–4137CrossRefGoogle Scholar
  9. 9.
    Li J, Wei G, Zhu Y, Xi Y, Pan X, Ji Y, Zatovsky IV, Han W (2017) Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J Mater Chem A 5:14828–14837CrossRefGoogle Scholar
  10. 10.
    Zhang X, Wu A, Wang X, Tian C, An R, Fu H (2018) Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J Mater Chem A 6:17905–17914CrossRefGoogle Scholar
  11. 11.
    Huang Z, Li X, Xiang X, Gao T, Zhang Y, Xiao D (2018) Porous NiCoP in situ grown on Ni foam using molten-salt electrodeposition for asymmetric supercapacitors. J Mater Chem A 6:23746–23756CrossRefGoogle Scholar
  12. 12.
    Wang Z, Cao X, Liu D, Hao S, Du G, Asiri AM, Sun X (2016) Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chem Commun 52:14438–14441CrossRefGoogle Scholar
  13. 13.
    Matsui H, Oaki Y, Imai H (2016) Surface-functionalized hydrophilic monolayer of titanate and its application for dopamine detection. Chem Commun 52:9466–9469CrossRefGoogle Scholar
  14. 14.
    Li Y, Jiang Z, Huang J, Zhang X, Chen J (2017) Template-synthesis and electrochemical properties of urchin-like NiCoP electrocatalyst for hydrogen evolution reaction. Electrochim Acta 249:301–307CrossRefGoogle Scholar
  15. 15.
    Gurrappa I, Binder L (2018) Electrodeposition of nanostructured coatings and their characterization-a review. Sci Technol Adv Mater 9:043001CrossRefGoogle Scholar
  16. 16.
    Dupont MF, Donne SW (2014) Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors. Electrochim Acta 120:219–225CrossRefGoogle Scholar
  17. 17.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and Applica-tions, 2nded. John Wiley & Sons. Inc, New YorkGoogle Scholar
  18. 18.
    Qin Z, Chen Y, Huang Z, Su J, Guo L (2017) A bifunctional NiCoP-based core/shell cocatalyst to promote separate photocatalytic hydrogen and oxygen generation over graphitic carbon nitride. J Mater Chem A 5:19025–19035CrossRefGoogle Scholar
  19. 19.
    Yue HY, Wu PF, Huang S, Wang ZZ, Gao X, Song SS, Wang WQ, Zhang HJ, Guo XR (2019) Golf ball-like MoS2 nanosheet arrays anchored onto carbon nanofibers for electrochemical detection of dopamine. Microchim Acta 186(6).  https://doi.org/10.1007/s00604-019-3495-5
  20. 20.
    Zhang XJ, Zheng JB (2019) Hollow carbon sphere supported ag nanoparticles for promoting electrocatalytic performance of dopamine sensing. Sensor Actuat B-Chem 290:648–655CrossRefGoogle Scholar
  21. 21.
    Liu Y, Du Y, Gao WK, Dong B, Han Y, Wang L (2018) Surface phosphorsulfurization of NiCo2O4 nanoneedles supported on carbon cloth with enhanced electrocatalytic activity for hydrogen evolution. Electrochim Acta 290:339–346CrossRefGoogle Scholar
  22. 22.
    Chu J, Carroll TG, Wu G, Telser J, Dobrovetsky R, Ménard G (2018) Probing hydrogen atom transfer at a phosphorus(V) oxide bond using a “bulky hydrogen atom” surrogate: analogies to PCET. J Am Chem Soc 140:15375–15383CrossRefGoogle Scholar
  23. 23.
    Kang XM, Cai WH, Zhang S, Cui SX (2017) Revealing the formation mechanism of insoluble polydopamine by using a simplified model system. Polym Chem 8:860–864CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Yunnan Province Key Lab of Micro-Nano Materials and TechnologyYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations