Microchimica Acta

, 186:523 | Cite as

Disposable electrochemical immunosensor array for the multiplexed detection of the drug metabolites morphine, tetrahydrocannabinol and benzoylecgonine

  • Shimaa Eissa
  • Rema A. Almthen
  • Mohammed ZourobEmail author
Original Paper


Heroin, marijuana and cocaine are widely abused drugs. Their use can be readily detected by analyzing urine for the metabolites morphine (MOR), tetrahydrocannabinol (THC) or benzoylecgonine (BZC). A multiplex immunosensor is described here for detection of MOR, THC and BZC using screen printed carbon array electrodes modified with gold nanoparticles. Antibodies against MOR, THC and BZC were immobilized on eight electrodes in a sensor array simultaneously, and a competitive assay was used for the detection. The free analytes in the sample compete with bovine serum albumin-conjugated analytes for the immobilized antibodies on the sensor surface. The array is capable of detecting the three drugs simultaneously within 20–40 min. The method has a high sensitivity, with detection limits as low as 1.2, 7.0, and 8.0 pg.mL−1 for MOR, THC and BZC, respectively. Cross reactivity testing was preformed to monitor any nonspecific binding. The results revealed good selectivity. Urine samples were spiked with the 3 drugs and tested with the multiplexed immunosensor. Recovery percentages ranged between 88 to 115%.

Graphical abstract

Schematic presentation of the multiplexed immunosensor for drugs of abuse,viz. tetrahydrocannabinol (THC), morphine (MOR), and benzoylecgonine (BZC)) by using an array of modified electrodes.


Voltammetry Immunosensor Multiplexed detection Morphine Tetrahydrocannabinol Benzoylecgonine 


Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Xiao D, Jiang Y, Bi Y (2018) Molecularly imprinted polymers for the detection of illegal drugs and additives: a review. Microchim Acta 185(4):247. CrossRefGoogle Scholar
  2. 2.
    Cherubin CE, Sapira JD (1993) The medical complications of drug addiction and the medical assessment of the intravenous drug user: 25 years later. Ann Intern Med 119(10):1017–1028CrossRefGoogle Scholar
  3. 3.
    Büttner A (2011) Review: the neuropathology of drug abuse. Neuropathol Appl Neurobiol 37(2):118–134. CrossRefPubMedGoogle Scholar
  4. 4.
    World Drug Report (2015) UNITED NATIONS New YorkGoogle Scholar
  5. 5.
    Strano-Rossi S, Molaioni F, Rossi F, Botrè F (2005) Rapid screening of drugs of abuse and their metabolites by gas chromatography/mass spectrometry: application to urinalysis. Rapid Commun Mass Spectrom 19(11):1529–1535. CrossRefPubMedGoogle Scholar
  6. 6.
    Jamwal R, Topletz AR, Ramratnam B, Akhlaghi F (2017) Ultra-high performance liquid chromatography tandem mass-spectrometry for simple and simultaneous quantification of cannabinoids. J Chromatogr B 1048:10–18. CrossRefGoogle Scholar
  7. 7.
    Chiuminatto U, Gosetti F, Dossetto P, Mazzucco E, Zampieri D, Robotti E, Gennaro MC, Marengo E (2010) Automated online solid phase extraction ultra high performance liquid chromatography method coupled with tandem mass spectrometry for determination of forty-two therapeutic drugs and drugs of abuse in human urine. Anal Chem 82(13):5636–5645. CrossRefPubMedGoogle Scholar
  8. 8.
    Ary K, Róna K (2001) LC determination of morphine and morphine glucuronides in human plasma by coulometric and UV detection. J Pharm Biomed Anal 26(2):179–187. CrossRefPubMedGoogle Scholar
  9. 9.
    Zgair A, Wong JCM, Sabri A, Fischer PM, Barrett DA, Constantinescu CS, Gershkovich P (2015) Development of a simple and sensitive HPLC–UV method for the simultaneous determination of cannabidiol and Δ9-tetrahydrocannabinol in rat plasma. J Pharm Biomed Anal 114:145–151. CrossRefPubMedGoogle Scholar
  10. 10.
    Barnett NW, Lewis SW, Tucker DJ (1996) Determination of morphine in process streams by sequential injection analysis with chemiluminescence detection. Fresenius J Anal Chem 355(5):591–595. CrossRefGoogle Scholar
  11. 11.
    Pulgarín JAM, Bermejo LFG, Gallego JML, García MNS (2008) Simultaneous stopped-flow determination of morphine and naloxone by time-resolved chemiluminescence. Talanta 74(5):1539–1546. CrossRefGoogle Scholar
  12. 12.
    Agius R, Nadulski T, Moore C (2012) Validation of LUCIO®-direct-ELISA kits for the detection of drugs of abuse in urine: application to the new German driving licence re-granting guidelines. Forensic Sci Int 215(1):38–45. CrossRefPubMedGoogle Scholar
  13. 13.
    Carrio A, Sampedro C, Sanchez-Lopez JL, Pimienta M, Campoy P (2015) Automated low-cost smartphone-based lateral flow saliva test reader for drugs-of-abuse detection. Sensors (Basel, Switzerland) 15(11):29569–29593. CrossRefGoogle Scholar
  14. 14.
    Guler E, Yilmaz Sengel T, Gumus ZP, Arslan M, Coskunol H, Timur S, Yagci Y (2017) Mobile phone sensing of cocaine in a lateral flow assay combined with a biomimetic material. Anal Chem 89(18):9629–9632. CrossRefPubMedGoogle Scholar
  15. 15.
    Caslavska J, Allemann D, Thormann W (1999) Analysis of urinary drugs of abuse by a multianalyte capillary electrophoretic immunoassay. J Chromatogr A 838(1):197–211. CrossRefPubMedGoogle Scholar
  16. 16.
    Choi J, Kim C, Choi MJ (1998) Comparison of capillary electrophoresis-based immunoassay with fluorescence polarization immunoassay for the immunodetermination of methamphetamine using various methamphetamine antibodies. ELECTROPHORESIS 19 (16–17):2950–2955. CrossRefGoogle Scholar
  17. 17.
    Singh S, Mishra P, Banga I, S Parmar A, Prakash Tripathi P, Gandhi S (2018) Chemiluminescence based immunoassay for the detection of heroin and its metabolites. BioImpacts : BI 8 (1):53–58. CrossRefGoogle Scholar
  18. 18.
    Hazarika P, Jickells SM, Wolff K, Russell DA (2010) Multiplexed detection of metabolites of narcotic drugs from a single latent fingermark. Anal Chem 82(22):9150–9154. CrossRefPubMedGoogle Scholar
  19. 19.
    Gandhi S, Caplash N, Sharma P, Raman Suri C (2009) Strip-based immunochromatographic assay using specific egg yolk antibodies for rapid detection of morphine in urine samples. Biosens Bioelectron 25(2):502–505. CrossRefPubMedGoogle Scholar
  20. 20.
    Li F, Song J, Shan C, Gao D, Xu X, Niu L (2010) Electrochemical determination of morphine at ordered mesoporous carbon modified glassy carbon electrode. Biosens Bioelectron 25(6):1408–1413. CrossRefPubMedGoogle Scholar
  21. 21.
    Wanklyn C, Burton D, Enston E, Bartlett C-A, Taylor S, Raniczkowska A, Black M, Murphy L (2016) Disposable screen printed sensor for the electrochemical detection of delta-9-tetrahydrocannabinol in undiluted saliva. Chemistry Central Journal 10(1).
  22. 22.
    Ensafi AA, Heydari-Bafrooei E, Rezaei B (2013) Different interaction of codeine and morphine with DNA: a concept for simultaneous determination. Biosens Bioelectron 41:627–633. CrossRefPubMedGoogle Scholar
  23. 23.
    Talemi RP, Mashhadizadeh MH (2015) A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified au electrode. Talanta 131:460–466. CrossRefPubMedGoogle Scholar
  24. 24.
    Navaee A, Salimi A, Teymourian H (2012) Graphene nanosheets modified glassy carbon electrode for simultaneous detection of heroine, morphine and noscapine. Biosens Bioelectron 31(1):205–211. CrossRefPubMedGoogle Scholar
  25. 25.
    Li Y, Zou L, Li Y, Li K, Ye B (2014) A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film. Sensors Actuators B Chem 201:511–519. CrossRefGoogle Scholar
  26. 26.
    Chantada-Vázquez MP, Sánchez-González J, Peña-Vázquez E, Tabernero MJ, Bermejo AM, Bermejo-Barrera P, Moreda-Piñeiro A (2016) Simple and sensitive molecularly imprinted polymer – Mn-doped ZnS quantum dots based fluorescence probe for cocaine and metabolites determination in urine. Anal Chem 88(5):2734–2741. CrossRefPubMedGoogle Scholar
  27. 27.
    Weng C-H, Yeh W-M, Ho K-C, Lee G-B (2007) A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine. Sensors Actuators B Chem 121(2):576–582. CrossRefGoogle Scholar
  28. 28.
    Kriz D, Mosbach K (1995) Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer. Anal Chim Acta 300(1):71–75. CrossRefGoogle Scholar
  29. 29.
    Yeh W-M, Ho K-C (2005) Amperometric morphine sensing using a molecularly imprinted polymer-modified electrode. Anal Chim Acta 542(1):76–82. CrossRefGoogle Scholar
  30. 30.
    Zhang C, Han Y, Lin L, Deng N, Chen B, Liu Y (2017) Development of quantum dots-labeled antibody fluorescence immunoassays for the detection of morphine. J Agric Food Chem 65(6):1290–1295. CrossRefPubMedGoogle Scholar
  31. 31.
    Ya Y, Xiaoshu W, Qing D, Lin J, Yifeng T (2015) Label-free immunosensor for morphine based on the electrochemiluminescence of luminol on indium–tin oxide coated glass functionalized with gold nanoparticles. Anal Methods 7(11):4502–4507. CrossRefGoogle Scholar
  32. 32.
    Munoz EM, Lorenzo-Abalde S, González-Fernández Á, Quintela O, Lopez-Rivadulla M, Riguera R (2011) Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite. Biosens Bioelectron 26(11):4423–4428. CrossRefPubMedGoogle Scholar
  33. 33.
    Sakai G, Ogata K, Uda T, Miura N, Yamazoe N (1998) A surface plasmon resonance-based immunosensor for highly sensitive detection of morphine. Sensors Actuators B Chem 49(1):5–12. CrossRefGoogle Scholar
  34. 34.
    Munge BS, Stracensky T, Gamez K, DiBiase D, Rusling JF (2016) Multiplex Immunosensor arrays for electrochemical detection of Cancer biomarker proteins. Electroanalysis 28(11):2644–2658. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Eissa S, Alshehri N, Abduljabbar M, Rahman AMA, Dasouki M, Nizami IY, Al-Muhaizea MA, Zourob M (2018) Carbon nanofiber-based multiplexed immunosensor for the detection of survival motor neuron 1, cystic fibrosis transmembrane conductance regulator and Duchenne muscular dystrophy proteins. Biosens Bioelectron 117:84–90. CrossRefPubMedGoogle Scholar
  36. 36.
    Yu A, Liang Z, Cho J, Caruso F (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3(9):1203–1207. CrossRefGoogle Scholar
  37. 37.
    Eissa S, Zourob M (2017) Competitive voltammetric morphine immunosensor using a gold nanoparticle decorated graphene electrode. Microchim Acta 184(7):2281–2289. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Shimaa Eissa
    • 1
  • Rema A. Almthen
    • 1
  • Mohammed Zourob
    • 1
    Email author
  1. 1.Department of ChemistryAlfaisal UniversityRiyadhSaudi Arabia

Personalised recommendations