Microchimica Acta

, 186:519 | Cite as

A cytosine-rich hairpin DNA loaded with silver nanoclusters as a fluorescent probe for uranium(IV) and mercury(II) ions

  • Xi Lin
  • Fubing Xiao
  • Xuejiao Li
  • Feifei Li
  • Can Liu
  • Xilin Xiao
  • Nan Hu
  • Shengyuan YangEmail author
Original Paper


A dually responsive fluorescent probe for determination of U(IV) and mercury(II) ions was synthesized. The probe consists of a cytosine-rich hairpin DNA loaded with silver nanoclusters (DNA-AgNCs). The fluorescence of the AgNCs is found to be quenched by UO2(II) at pH 5.0 and Hg(II) at pH 7.0 due to combined static and dynamic quenching. Under the optimal conditions, the green fluorescence of the DNA-AgNCs, best measured at excitation/emission wavelengths of 420/525 nm, decreases in the 4.0 to 75 pM UO2(II) concentration range, and in the 0.3 to 8.0 nM Hg(II) concentration range. The respective detection limits are as low as 1.8 pM and 0.1 nM. The method was successfully applied to the determination of UO2(II) and Hg(II) in (spiked) pond and taps waters and in soil extracts.

Graphical abstract

A label-free DNA was designed to synthesize green-fluorescent silver nanoclusters (AgNCs) and used for rapid dual detection of uranyl ions (UO2(II)) at pH 5.0 and of mercury ions (Hg(II)) at pH 7.0 in environmental samples.


DNA-AgNCs UO2(II) Hg(II) Fluorometry Quenching Dual response Cytosine C-Ag(I)-C Soil sample Water sample 



The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 11205085), the Department of Education Excellent Youth Project of Hunan Province in China (No. 15B202), the Natural Science Foundation Project of Hunan Province (No. 2018JJ2323), the Technology Innovation Guidance Program Clinical Medical Technology Innovation Guide Project of Hunan Province (No. 2017SK50218), the Open Project Program of the State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University (Changsha, China; 2012018), the Defense Industrial Technology Development Program (JCKY2016403C001), and the Key Laboratory of Hengyang for Health Hazard Factors Inspection and Quarantine (No. 2018KJ110).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2019_3625_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1.09 mb)


  1. 1.
    Gwak R, Kim H, Yoo SM, Lee SY, Lee GJ, Lee MK, Rhee CK, Kang T, Kim B (2016) Precisely determining ultralow level UO2 2+ in natural water with Plasmonic nanowire interstice sensor. Sci Rep 6:19646. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ke B, Chen H, Ma L, Zingales S, Gong D, Hu D, Du L, Li M (2018) Visualization of mercury(ii) accumulation in vivo using bioluminescence imaging with a highly selective probe. Org Biomol Chem 16(14):2388–2392. CrossRefPubMedGoogle Scholar
  3. 3.
    Tyszczukrotko K, Domańska K, Czech B, Rotko M (2017) Development simple and sensitive voltammetric procedure for ultra-trace determination of U(VI). Talanta 165:474–481. CrossRefGoogle Scholar
  4. 4.
    Pokhrel LR, Ettore N, Jacobs ZL, Zarr A, Weir MH, Scheuerman PR, Kanel SR, Dubey B (2016) Novel carbon nanotube (CNT)-based ultrasensitive sensors for trace mercury(II) detection in water: a review. Sci Total Environ 574:1379–1388. CrossRefPubMedGoogle Scholar
  5. 5.
    Zoriy P, Schläger M, Murtazaev K, Pillath J, Zoriy M, Heuel-Fabianek B (2017) Monitoring of uranium concentrations in water samples collected near potentially hazardous objects in north-West Tajikistan. J Environ Radioact 181(181):109–117. CrossRefPubMedGoogle Scholar
  6. 6.
    Zhou QX, Lei M, Liu YL, Wu YL, Yuan YY (2017) Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@ag@Dimercaptobenzene coupled to high performance liquid chromatography. Talanta 175:194–199. CrossRefPubMedGoogle Scholar
  7. 7.
    Simons DS, Fassett JD (2017) Measurement of uranium-236 in particles by secondary ion massspectrometry. J Anal At Spectrom 32(2):393–401. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Krata A, Vassileva E, Bulska E (2016) Reference measurements for total mercury and methyl mercury content in marine biota samples using direct or species-specific isotope dilution inductively coupled plasma mass spectrometry. Talanta 160:562–569. CrossRefPubMedGoogle Scholar
  9. 9.
    Nguyen TK, Doan TS, Van HT (2002) Application of atomic absorption spectrometry for the quantitative determination of metallic impurities in pure uranium compounds. Anal Sci 18(11):1263–1266. CrossRefPubMedGoogle Scholar
  10. 10.
    Yoshimoto K, Anh HTV, Yamamoto A, Koriyama C, Ishibashi Y, Tabata M, Nakano A, Yamamoto M (2016) Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry. J Toxicol Sci 41(4):489–500. CrossRefPubMedGoogle Scholar
  11. 11.
    Bicim T, Yaman M (2016) Sensitive determination of uranium in natural waters using UV-vis spectrometry after Preconcentration by ion-imprinted polymer-ternary complexes. J AOAC Int 99(4):1043–1048. CrossRefPubMedGoogle Scholar
  12. 12.
    Fashi A, Yaftian MR, Zamani A (2017) Electromembrane extraction-preconcentration followed by microvolume UV–vis spectrophotometric determination of mercury in water and fish samples. Food Chem 221:714–720. CrossRefPubMedGoogle Scholar
  13. 13.
    Saha A, Sanyal K, Rawat N, Deb SB, Saxena MK, Tomar BS (2017) Selective micellar extraction of Ultratrace levels of uranium in aqueous samples by task specific ionic liquid followed by its detection employing Total reflection X-ray fluorescence spectrometry. Anal Chem 89(19):10422–10430. CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang B, Ma PY, Gao DJ, Wang XH, Sun Y, Song DQ, Li XW (2016) A FRET-based fluorescent probe for mercury ions in water and living cells. Spectrochim Acta A Mol Biomol Spectrosc 165:99–105. CrossRefPubMedGoogle Scholar
  15. 15.
    Chen JH, Zhang X, Cai SX, Wu DZ, Chen M, Wang SH, Zhang J (2014) A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin a detection. Biosens Bioelectron 57(10):226–231. CrossRefPubMedGoogle Scholar
  16. 16.
    Díez I, Ras RHA (2011) Fluorescent silver nanoclusters. Nanoscale 3(5):1963–1970. CrossRefPubMedGoogle Scholar
  17. 17.
    Lan GY, Chen WY, Chang HT (2011) Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence. RSC Adv 1(5):802–807. CrossRefGoogle Scholar
  18. 18.
    Choi SM, Yu JH, Patel SA, Tzeng YL, Dickson RM (2011) Tailoring silver Nanodots for intracellular staining. Photochem Photobiol Sci 10(1):109–115. CrossRefPubMedGoogle Scholar
  19. 19.
    Li CY, Wei CY (2017) DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sensor Actuat B-Chem 242:563–568. CrossRefGoogle Scholar
  20. 20.
    Gong L, Kuai HL, Ren SL, Zhao XH, Huan SY, Zhang XB, Tan WH (2015) Ag nanocluster-based label-free catalytic and molecular beacons for amplified biosensing. Chem Commun 51(60):12095–12098. CrossRefGoogle Scholar
  21. 21.
    O’Neill PR, Velazquez LR, Dunn DG, Gwinn EG, Fygenson DK (2009) Hairpins with poly-C loops stabilize four types of fluorescent Agn: DNA. J Phys Chem C 113(11):4229–4233. CrossRefGoogle Scholar
  22. 22.
    Kuang YF, Liang S, Ma FF, Chen S, Long YF, Zeng RJ (2017) Silver nanoclusters stabilized with denatured fish sperm DNA and the application on trace mercury ions detection. Luminescence 32(4):674–679. CrossRefPubMedGoogle Scholar
  23. 23.
    Guo C, Irudayaraj J (2011) Fluorescent ag clusters via a protein-directed approach as a hg(II) ion sensor. Anal Chem 83(8):2883–2889. CrossRefPubMedGoogle Scholar
  24. 24.
    Lan GY, Chen WY, Chang HT (2011) Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence. RSC Adv 1(5):802–807. CrossRefGoogle Scholar
  25. 25.
    Frisbie SH, Mitchell EJ, Sarkar B (2015) Urgent need to reevaluate the latest World Health Organization guidelines for toxic inorganic substances in drinking water. Environ Health 14(1):63. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zhang YL, MirÓ M, Kolev SD (2018) A novel on-line organic mercury digestion method combined with atomic fluorescence spectrometry for automatic mercury speciation. Talanta 189:220–224. CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu JH, Zhao X, Yang JD, Tan YT, Zhang L, Liu SP, Liu ZF, Hu XL (2016) Selective colorimetric and fluorescent quenching determination of uranyl ion via its complexation with curcumin. Spectrochim Acta A Mol Biomol Spectrosc 159:146–150. CrossRefPubMedGoogle Scholar
  28. 28.
    Haraga T, Ouchi K, Sato Y, Hoshino H, Tanaka R, Fujihara T, Kurokawa H, Shibukawa M, Ishimori K, Kameo Y, Saito S (2018) Safe and rapid development of capillary electrophoresis for ultratrace uranyl ions in radioactive samples by way of fluorescent probe selection for actinide ions from a chemical library. Anal Chim Acta 1032:188–196. CrossRefPubMedGoogle Scholar
  29. 29.
    Huang CP, Fan XY, Yuan QM, Zhang XF, Hou XD, Wu P (2018) Colorimetric determination of uranyl (UO2 2+) in seawater via DNAzyme-modulated photosensitization. Talanta 185:258–263. CrossRefPubMedGoogle Scholar
  30. 30.
    Elabd AA, Elhefnawy OA (2015) An efficient and sensitive optical sensor based on furosemide as a new Fluoroionophore for determination of uranyl ion. J Fluoresc 26(1):271–276. CrossRefPubMedGoogle Scholar
  31. 31.
    Hua MX, Yang S, Ma JQ, He WW, Kuang LJ, Hua DB (2018) Highly selective and sensitive determination of uranyl ion by the probe of CdTe quantum dot with a specific size. Talanta 190:278–283. CrossRefPubMedGoogle Scholar
  32. 32.
    Huang DL, Liu XG, Lai C, Qin L, Zhang C, Yi H, Zeng GM, Li BS, Deng R, Liu SY, Zhang YJ (2019) Colorimetric determination of mercury(II) using gold nanoparticles and double ligand exchange. Microchim Acta 186(1):31. CrossRefGoogle Scholar
  33. 33.
    Wang CH, Tang GG, Tan HL (2018) Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim Acta 185(10):475. CrossRefGoogle Scholar
  34. 34.
    Wang X, Yang XF, Wang N, Lv JJ, Wang HJ, Choi MMF, Bian W (2018) Graphitic carbon nitride quantum dots as an “off-on” fluorescent switch for determination of mercury(II) and sulfide. Microchim Acta 185(10):471. CrossRefGoogle Scholar
  35. 35.
    Lin X, Lu YS, Yang SY, Liu LQ, Li FF, He SZ (2018) Visual colorimetric detection of hg(II) with graphene oxide peroxidase-like activity. Spectrosc Spectr Anal 38(10):3188–3191. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xi Lin
    • 1
  • Fubing Xiao
    • 1
  • Xuejiao Li
    • 1
    • 2
  • Feifei Li
    • 1
  • Can Liu
    • 1
  • Xilin Xiao
    • 3
  • Nan Hu
    • 3
  • Shengyuan Yang
    • 1
    Email author
  1. 1.College of Public HealthUniversity of South ChinaHengyangPeople’s Republic of China
  2. 2.Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  3. 3.Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and HydrometallurgyUniversity of South ChinaHengyangChina

Personalised recommendations