Advertisement

Microchimica Acta

, 186:480 | Cite as

A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine

  • J. Deepika
  • Rinky Sha
  • Sushmee BadhulikaEmail author
Original Paper
  • 56 Downloads

Abstract

An electrochemical dopamine (DA) sensor has been fabricated by modifying a glassy carbon electrode (GCE) with ruthenium disulfide (RuS2) nanoparticles (NPs). FESEM and TEM micrographs show the NPs to have an average size of ~45 nm. XRD, Raman and EDS, in turn, confirm the successful formation of cubic phased RuS2 NPs. The modified GCE displays has attractive features of merit that include (a) an ultra-low detection limit (73.8 nM), (b) fast response time (< 4 s), (c) a low oxidation potential (0.25 V vs. Ag|AgCl), (d) excellent reproducibility and stability, (e) an electrochemical sensitivity of 18.4 μA μM−1 cm−2 and 1.8 μA.μM−1.cm−2 in the linear ranges from 0.1–10 μM of DA (R2 = 0.97) and 10–80 μM of DA (R2 = 0.99), respectively. The sensor exhibits excellent specificity over potential interferents like ascorbic acid, glucose and uric acid. The superior performance of the sensor is attributed to its high electrical conductivity, large electro-active surface, and large numbers of exposed catalytically active sites resulting from the presence of unreacted sulfur atoms.

Graphical abstract

A ruthenium disulfide modified electrochemical sensor material was obtained by single-step hydrothermal synthesis. Sensitive and highly selective detection of dopamine is demonstrated.

Keywords

TMDs Hydrothermal method Nanoparticles Electrochemical sensor Binder-free 

Notes

Acknowledgements

The authors acknowledge financial assistance from Department of Science and Technology (DST), Government of India, under INSPIRE Faculty Fellowship Grant # DST/INSPIRE/04/2014/015132 and Scientific and Engineering Research Board Grant SB/WEA-03/2017.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3622_MOESM1_ESM.docx (105 kb)
ESM 1 (DOCX 105 kb)

References

  1. 1.
    Oh J, Lee JS, Jun J, Kim SG, Jang J (2017) Ultrasensitive and selective organic FET-type nonenzymatic dopamine sensor based on platinum nanoparticles-decorated reduced graphene oxide. ACS Appl Mater Interfaces 9(45):39526–39533CrossRefGoogle Scholar
  2. 2.
    Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191CrossRefGoogle Scholar
  3. 3.
    Hou Y, Sheng K, Lu Y, Ma C, Liu W, Men X et al (2018) Three-dimensional graphene oxide foams loaded with AuPd alloy: a sensitive electrochemical sensor for dopamine. Microchim Acta 185(8):397CrossRefGoogle Scholar
  4. 4.
    Hsieh YS, Hong BD, Lee CL (2016) Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix. Microchim Acta 183(2):905–910CrossRefGoogle Scholar
  5. 5.
    Zhao P, Chen C, Ni M, Peng L, Li C, Xie Y, Fei J (2019) Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocomposite prepared from multiwalled carbon nanotubes and graphene oxide. Microchim Acta 186(3):134CrossRefGoogle Scholar
  6. 6.
    Sáenz HSC, Hernández-Saravia LP, Selva JS, Sukeri A, Espinoza-Montero PJ, Bertotti M (2018) Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy. Microchim Acta 185(8):367CrossRefGoogle Scholar
  7. 7.
    Josephine DSR, Babu KJ, Sethuraman K (2017) Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric sensing of dopamine. Microchim Acta 184(3):781–790CrossRefGoogle Scholar
  8. 8.
    Chen D, Tian C, Li X, Li Z, Han Z, Zhai C et al (2018) Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene. Microchim Acta 185(2):98CrossRefGoogle Scholar
  9. 9.
    Mahesh KPO, Shown I, Chen LC, Chen KH, Tai Y (2018) Flexible sensor for dopamine detection fabricated by the direct growth of α-Fe2O3 nanoparticles on carbon cloth. Appl Surf Sci 427:387–395CrossRefGoogle Scholar
  10. 10.
    Sha R, Jones SS, Vishnu N, Soundiraraju B, Badhulika S (2018) A novel biomass derived carbon quantum dots for highly sensitive and selective detection of hydrazine. Electroanalysis 30(10):2228–2232CrossRefGoogle Scholar
  11. 11.
    Florescu M, David M (2017) Tyrosinase-based biosensors for selective dopamine detection. Sensors 17(6):1314CrossRefGoogle Scholar
  12. 12.
    Yue HY, Zhang HJ, Huang S, Gao X, Song SS, Wang Z et al (2019) A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets. J Mater Sci: Mater Electron 30(5):5000–5007Google Scholar
  13. 13.
    Sha R, Puttapati SK, Srikanth VV, Badhulika S (2018) Ultra-sensitive non-enzymatic ethanol sensor based on reduced graphene oxide-zinc oxide composite modified electrode. IEEE Sensors J 18(5):1844–1848CrossRefGoogle Scholar
  14. 14.
    Xue H, Wang Y, Dai Y, Kim W, Jussila H, Qi M et al (2018) A MoSe2/WSe2 heterojunction-based photodetector at telecommunication wavelengths. Adv Funct Mater 28(47):1804388CrossRefGoogle Scholar
  15. 15.
    Sha R, Vishnu N, Badhulika S (2019) MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of uric acid in human urine samples. Sensors Actuators B Chem 279:53–60CrossRefGoogle Scholar
  16. 16.
    Han X, Wu X, Deng Y, Liu J, Lu J, Zhong C, Hu W (2018) Ultrafine Pt nanoparticle-decorated pyrite-type CoS2 Nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv Energy Mater 8(24):1800935CrossRefGoogle Scholar
  17. 17.
    Sha R, Gopalakrishnan A, Sreenivasulu KV, Srikanth VV, Badhulika S (2019) Template-cum-catalysis free synthesis of α-MnO2 nanorods-hierarchical MoS2 microspheres composite for ultra-sensitive and selective determination of nitrite. J Alloys Compd 794:26–34CrossRefGoogle Scholar
  18. 18.
    Krishnamoorthy K, Pazhamalai P, Kim SJ (2017) Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochim Acta 227:85–94CrossRefGoogle Scholar
  19. 19.
    Sarno M, Ponticorvo E (2019) High hydrogen production rate on RuS2@ MoS2 hybrid nanocatalyst by PEM electrolysis. Int J Hydrog Energy 44(9):4398–4405CrossRefGoogle Scholar
  20. 20.
    Kubendhiran S, Sakthivel R, Chen SM, Anbazhagan R, Tsai HC (2019) A novel design and synthesis of ruthenium sulfide decorated activated graphite nanocomposite for the electrochemical determination of antipsychotic drug chlorpromazine. Compos Part B 168:282–290CrossRefGoogle Scholar
  21. 21.
    Catherin N, Blanco E, Piccolo L, Laurenti D, Simonet F, Lorentz C et al (2019) Selective ring opening of decalin over bifunctional RuS2/zeolite catalysts. Catal Today 323:105–111CrossRefGoogle Scholar
  22. 22.
    Park IS, Kim OH, Kim JW, Cho YH, Sung YE (2016) Carbon-supported Pt-RuS 2 nanocomposite as hydrogen oxidation reaction catalysts for fuel cells. J Appl Electrochem 46(1):77–83CrossRefGoogle Scholar
  23. 23.
    Thakur N, Das Adhikary S, Kumar M, Mehta D, Padhan AK, Mandal D, Nagaiah TC (2018) Ultrasensitive and highly selective electrochemical detection of dopamine using poly (ionic liquids)–cobalt Polyoxometalate/CNT composite. ACS Omega 3(3):2966–2973CrossRefGoogle Scholar
  24. 24.
    Sha R, Vishnu N, Badhulika S (2018) Bimetallic Pt-Pd nanostructures supported on MoS 2 as an ultra-high performance electrocatalyst for methanol oxidation and nonenzymatic determination of hydrogen peroxide. Microchim Acta 185(8):399CrossRefGoogle Scholar
  25. 25.
    Yang T, Chen H, Jing C, Luo S, Li W, Jiao K (2017) Using poly (m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sensors Actuators B Chem 249:451–457CrossRefGoogle Scholar
  26. 26.
    Ma L, Zhang Q, Wu C, Zhang Y, Zeng L (2019) PtNi bimetallic nanoparticles loaded MoS2 nanosheets: preparation and electrochemical sensing application for the detection of dopamine and uric acid. Anal Chim Acta 1055:17–25CrossRefGoogle Scholar
  27. 27.
    Numan A, Shahid MM, Omar FS, Ramesh K, Ramesh S (2017) Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors Actuators B Chem 238:1043–1051CrossRefGoogle Scholar
  28. 28.
    Khan AF, Brownson DA, Randviir EP, Smith GC, Banks CE (2016) 2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine. Anal Chem 88(19):9729–9737CrossRefGoogle Scholar
  29. 29.
    Mercante LA, Pavinatto A, Iwaki LE, Scagion VP, Zucolotto V, Oliveira ON Jr et al (2015) Electrospun polyamide 6/poly (allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine. ACS Appl Mater Interfaces 7(8):4784–4790CrossRefGoogle Scholar
  30. 30.
    Wang C, Du J, Wang H, Zou CE, Jiang F, Yang P, Du Y (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 204:302–309CrossRefGoogle Scholar
  31. 31.
    Fan Y, Lu HT, Liu JH, Yang CP, Jing QS, Zhang YX et al (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids Surf B: Biointerfaces 83(1):78–82CrossRefGoogle Scholar
  32. 32.
    Huang ZN, Zou J, Teng J, Liu Q, Yuan MM, Jiao FP et al (2019) A novel electrochemical sensor based on self-assembled platinum nanochains-multi-walled carbon nanotubes-graphene nanoparticles composite for simultaneous determination of dopamine and ascorbic acid. Ecotoxicol Environ Saf 172:167–175CrossRefGoogle Scholar
  33. 33.
    Kannan PK, Moshkalev SA, Rout CS (2016) Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobelts. Nanotechnology 27(7):075504CrossRefGoogle Scholar
  34. 34.
    Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH (2016) Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens Bioelectron 81:259–267CrossRefGoogle Scholar
  35. 35.
    Daemi S, Ashkarran AA, Bahari A, Ghasemi S (2017) Gold nanocages decorated biocompatible amine functionalized graphene as an efficient dopamine sensor platform. J Colloid Interface Sci 494:290–299CrossRefGoogle Scholar
  36. 36.
    Yuan Y, Xia J, Zhang F, Wang Z, Liu Q (2018) Nafion/polyaniline/Zeolitic Imidazolate Framework-8 nanocomposite sensor for the electrochemical determination of dopamine. J Electroanal Chem 824:147–152CrossRefGoogle Scholar
  37. 37.
    Sha R, Badhulika S (2018) Few layered MoS2 grown on pencil graphite: a unique single-step approach to fabricate economical, binder-free electrode for supercapacitor applications. Nanotechnology 30(3):035402CrossRefGoogle Scholar
  38. 38.
    Sha R, Badhulika S (2017) Binder free platinum nanoparticles decorated graphene-polyaniline composite film for high performance supercapacitor application. Electrochim Acta 251:505–512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of TechnologyHyderabadIndia

Personalised recommendations