Advertisement

Microchimica Acta

, 186:477 | Cite as

A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy

  • Yanshu Zhang
  • Yufei Hu
  • Gongke LiEmail author
  • Runkun ZhangEmail author
Original Paper
  • 81 Downloads

Abstract

Core-shell nanoparticles (NPs) consisting of a gold core and a metal-organic framework shell (type MOF-74) were synthesized via one-pot synthesis. The NPs exhibit highly sensitive and stable SERS activity for the detection of 4-nitrothiophenol, with a specific band at 1337 cm−1. The method has a linear response in 0.10–10 μmol·L−1 analyte concentration range and a lower detection limit of 69 nmol·L−1. The potential application of this novel SERS substrate was evaluated by two model reactions involving 4-nitrothiophenol. The first involves in-situ SERS monitoring of the surface plasmon-induced nitration of aromatic rings without adding conventional acid catalyst. The second involves the photocatalytic reduction of 4-nitrothiophenol to 4-thioaminophenol in the presence of Au/MOF-74 under 785-nm laser irradiation. The plasmon-assisted dimerization of 4-nitrothiophenol to form 4,4′-dimercaptoazobenzene can also be monitored simultaneously.

Graphical abstract

Schematic presentation of a nanoparticle SERS substrate consisting of gold core and MOF-74 shell, which was applied to detection of 4-nitrothiophenol. The Au/MOF-74 was successfully used for in-situ monitoring of two model reactions involving 4-nitrothiophenol by SERS.

Keywords

Surface-enhanced Raman scattering In-situ monitoring Reaction process Core-shell nanoparticles Surface plasmon induced 4-nitrothiophenol 

Notes

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 21675178, 21605163 and 21775167), the Guangdong Provincial Natural Science Foundation of China (No. 2016A030313358), and the Research and Development Plan for Key Areas of Food Safety in Guangdong Province of China (No.2019B020211001), respectively.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3618_MOESM1_ESM.doc (2.9 mb)
ESM 1 (DOC 2988 kb)

References

  1. 1.
    Kuang X, Ye SJ, Li XY, Ma Y, Zhang CY, Tang B (2016) A new type of surface-enhanced Raman scattering sensor for the enantioselective recognition of D/L-cysteine and D/L-asparagine based on a helically arranged ag NPs@homochiral MOF. Chem Commun 52(31):5432–5435.  https://doi.org/10.1039/c6cc00320f CrossRefGoogle Scholar
  2. 2.
    Wang YQ, Yan B, Chen LX (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428.  https://doi.org/10.1021/cr300120g CrossRefPubMedGoogle Scholar
  3. 3.
    Li ZC, Xia L, Li GK, Hu YL (2019) Raman spectroscopic imaging of pH values in cancerous tissue by using polyaniline@gold nanoparticles. Microchim Acta 186:162.  https://doi.org/10.1007/s00604-019-3265-4 CrossRefGoogle Scholar
  4. 4.
    Shi X, Li HW, Ying YL, Liu C, Zhang L, Long YT (2016) In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy. Chem Commun 52(5):1044–1047.  https://doi.org/10.1039/C5CC09220E CrossRefGoogle Scholar
  5. 5.
    Xie W, Schlücker S (2014) Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep Prog Phys 77:116502.  https://doi.org/10.1088/0034-4885/77/11/116502 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang H, Wang C, Sun HL, Fu G, Chen S, Zhang YJ, Chen BH, Anema JR, Yang ZL, Li JF, Tian ZQ (2017) In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Commun 8:15447.  https://doi.org/10.1038/ncomms15447 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xie W, Schlucker S (2018) Surface-enhanced Raman spectroscopic detection of molecular chemo- and plasmo-catalysis on noble metal nanoparticles. Chem Commun 54(19):2326–2336.  https://doi.org/10.1039/c7cc07951f CrossRefGoogle Scholar
  8. 8.
    Qi DY, Yan XF, Wang LZ, Zhang JL (2015) Plasmon-free SERS self-monitoring of catalysis reaction on au nanoclusters/TiO2 photonic microarray. Chem Commun 51(42):8813–8816.  https://doi.org/10.1039/c5cc02468d CrossRefGoogle Scholar
  9. 9.
    Zhang KG, Li GK, Hu YL (2015) In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy. Nanoscale 7(40):16952–16959.  https://doi.org/10.1039/C5NR05718C CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang Y, Zou YX, Liu F, Xu YT, Wang XW, Li YJ, Liang H, Chen L, Chen Z, Tan WH (2016) Stable graphene-isolated-au-nanocrystal for accurate and rapid surface enhancement Raman scattering analysis. Anal Chem 88(21):10611–10616.  https://doi.org/10.1021/acs.analchem.6b02958 CrossRefPubMedGoogle Scholar
  11. 11.
    Xie W, Herrmann C, Kompe K, Haase M, Schlucker S (2011) Synthesis of bifunctional au/Pt/au Core/Shell Nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J Am Chem Soc 133(48):19302–19305.  https://doi.org/10.1021/ja208298q CrossRefPubMedGoogle Scholar
  12. 12.
    Huang JF, Zhu YH, Lin M, Wang QX, Zhao L, Yang Y, Yao KX, Han Y (2013) Site-specific. Growth of au-Pd alloy horns on au Nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. J Am Chem Soc 135(23):8552–8561.  https://doi.org/10.1021/ja4004602 CrossRefPubMedGoogle Scholar
  13. 13.
    Li JM, Liu JY, Yang Y, Qin D (2015) Bifunctional ag@Pd-ag Nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J Am Chem Soc 137(22):7039–7042.  https://doi.org/10.1021/jacs.5b03528 CrossRefPubMedGoogle Scholar
  14. 14.
    Ding QQ, Zhou HJ, Zhang HM, Zhang YX, Wang GZ, Zhao HJ (2016) 3D Fe3O4@au@ag nanoflowers assembled magnetoplasmonic chains for in situ SERS monitoring of plasmon-assisted catalytic reactionst. J Mater Chem A 4(22):8866–8874.  https://doi.org/10.1039/c6ta02264b CrossRefGoogle Scholar
  15. 15.
    Zhang JW, Winget SA, Wu YR, Su D, Sun XJ, Xie ZX, Qin D (2016) Ag@au concave cuboctahedra: a unique probe for monitoring au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy. ACS Nano 10(2):2607–2616.  https://doi.org/10.1021/acsnano.5b07665 CrossRefPubMedGoogle Scholar
  16. 16.
    Yang H, He LQ, Hu YW, Lu XH, Li GR, Liu BJ, Ren B, Tong YX, Fang PP (2015) Quantitative detection of Photothermal and Photoelectrocatalytic effects induced by SPR from au@Pt nanoparticles. Angew Chem Int Ed 54(39):11462–11466.  https://doi.org/10.1002/anie.201505985 CrossRefGoogle Scholar
  17. 17.
    Yang JL, Xu J, Ren H, Sun L, Xu QC, Zhang H, Li JF, Tian ZQ (2017) In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional au@CdS core-shell nanocomposites. Nanoscale 9(19):6254–6258.  https://doi.org/10.1039/c7nr00655a CrossRefPubMedGoogle Scholar
  18. 18.
    Anik U, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchim Acta 186(3):196.  https://doi.org/10.1007/s00604-019-3321-0 CrossRefGoogle Scholar
  19. 19.
    Li WH, Wu XF, Han N, Chen JY, Tang WX, Chen YF (2016) Core-shell au@ZnO nanoparticles derived from au@MOF and their sub-ppm level acetone gas-sensing performance. Powder Technol 304:241–247.  https://doi.org/10.1016/j.powtec.2016.08.028 CrossRefGoogle Scholar
  20. 20.
    Li J, Wang JX, Ling Y, Chen ZX, Gao MX, Zhang XM, Zhou YM (2017) Unprecedented highly efficient capture of glycopeptides by Fe3O4@mg-MOF-74 core-shell nanoparticles. Chem Commun 53(28):4018–4021.  https://doi.org/10.1039/c7cc00447h CrossRefGoogle Scholar
  21. 21.
    Ke F, Wang LH, Zhu JF (2014) Multifunctional au-Fe3O4@MOF core–shell nanocomposite catalysts with controllable reactivity and magnetic recyclability. Nanoscale 7(3):1201–1208.  https://doi.org/10.1039/C4NR05421K CrossRefGoogle Scholar
  22. 22.
    Ke F, Wang LH, Zhu JF (2015) An efficient room temperature core–shell AgPd@MOF catalyst for hydrogen production from formic acid. Nanoscale 7(18):8321–8325.  https://doi.org/10.1039/C4NR07582J CrossRefPubMedGoogle Scholar
  23. 23.
    Deng KR, Hou ZY, Li XJ, Li CX, Zhang YX, Deng XR, Cheng ZY, Lin J (2015) Aptamer-mediated up-conversion Core/MOF Shell nanocomposites for targeted drug delivery and cell imaging. Sci Rep 5:7851.  https://doi.org/10.1038/srep07851 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liao J, Wang DM, Liu AQ, Hu YL, Li GK (2015) Controlled stepwise-synthesis of core-shell au@MIL-100 (Fe) nanoparticles for sensitive surface-enhanced Raman scattering detection. Analyst 140(24):8165–8171.  https://doi.org/10.1039/c5an01657f CrossRefPubMedGoogle Scholar
  25. 25.
    Lai HS, Shang WJ, Yun YY, Chen DJ, Wu LQ, Xu FG (2019) Uniform arrangement of gold nanoparticles on magnetic core particles with a metal-organic framework shell as a substrate for sensitive and reproducible SERS based assays: application to the quantitation of malachite green and thiram. Microchim Acta 186(3):144.  https://doi.org/10.1007/s00604-019-3257-4 CrossRefGoogle Scholar
  26. 26.
    Hartman T, Wondergem CS, Kumar N, van den Berg A, Weckhuysen BM (2016) Surface- and tip-enhanced Raman spectroscopy in catalysis. J Phys Chem Lett 7(8):1570–1584.  https://doi.org/10.1021/acs.jpclett.6b00147 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2009) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. PNAS 106(49):20637–20640.  https://doi.org/10.1073/pnas.0909718106 CrossRefPubMedGoogle Scholar
  28. 28.
    Cai WY, Tang XH, Sun B, Yang LB (2014) Highly sensitive in situ monitoring of catalytic reactions by surface enhancement Raman spectroscopy on multifunctional Fe3O4/C/AuNPs. Nanoscale 6(14):7954–7958.  https://doi.org/10.1039/C4NR01147C CrossRefPubMedGoogle Scholar
  29. 29.
    He LC, Liu Y, Liu JZ, Xiong YS, Zheng JZ, Liu YL, Tang ZY (2013) Core-Shell Noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew Chem Int Ed 52(13):3741–3745.  https://doi.org/10.1002/anie.201209903 CrossRefGoogle Scholar
  30. 30.
    Kong XQ, Scott E, Ding W, Mason JA, Long JR, Reimer JA (2012) CO2 dynamics in a metal–organic framework with open metal sites. J Am Chem Soc 134(35):14341–14344.  https://doi.org/10.1021/ja306822p CrossRefPubMedGoogle Scholar
  31. 31.
    Chen HJ, Liu G, Wang LZ (2015) Switched photocurrent direction in au/TiO2 bilayer thin films. Sci Rep 5:10852.  https://doi.org/10.1038/srep10852 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Huang W, Jing Q, Du YC, Zhang B, Meng XL, Sun MT, Schanze KS, Gao H, Xu P (2015) An in situ SERS study of substrate-dependent surface plasmon induced aromatic nitration. J Mater Chem C 3(20):5285–5291.  https://doi.org/10.1039/C5TC00835B CrossRefGoogle Scholar
  33. 33.
    Lin FH, Doong RA (2011) Bifunctional au−Fe3O4 Heterostructures for magnetically recyclable catalysis of Nitrophenol reduction. J Phys Chem C 115(14):6591–6598.  https://doi.org/10.1021/jp110956k CrossRefGoogle Scholar
  34. 34.
    Tang XH, Cai WY, Yang LB, Liu JH (2014) Monitoring plasmon-driven surface catalyzed reactions in situ using time-dependent surface-enhanced Raman spectroscopy on single particles of hierarchical peony-like silver microflowers. Nanoscale 6(15):8612–8616.  https://doi.org/10.1039/c4nr01939c CrossRefPubMedGoogle Scholar
  35. 35.
    Zhao LB, Chen JL, Zhang M, Wu DY, Tian ZQ (2015) Theoretical study on Electroreduction of p-Nitrothiophenol on silver and gold electrode surfaces. J Phys Chem C 119(9):4949–4958.  https://doi.org/10.1021/jp512957c CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ChemistrySun Yat-sen UniversityGuangzhouChina

Personalised recommendations