Advertisement

Microchimica Acta

, 186:513 | Cite as

Gold nanoparticles stabilized with four kinds of amino acid-derived carbon dots for colorimetric and visual discrimination of proteins and microorganisms

  • Xin Lin
  • Xuwei ChenEmail author
Original Paper
  • 46 Downloads

Abstract

A colorimetric array is described for the sensitive discrimination of proteins and microorganisms. Carbon dots (CDs) were prepared from citric acid and one of the amino acids glycine, lysine, serine or aspartic acid. They act as stabilizers for gold nanoparticles (AuNPs). The interactions between target protein and the CD/AuNPs induce a different aggregation behavior. This provides the basis for colorimetric discrimination of protein species and results in color changes from red/purple to purple/blue. Specific response patterns are analyzed by linear discriminant analysis. Twelve kinds of proteins with different pI and molecular weight were visually discriminated at nanomolar concentration levels. Alternatively, discrimination can be performed by measurement of the ration of absorbance at 525 nm and 620 nm. The discrimination sensitivity is as low as 2 nM. The method can differentiate between BSA and HSA. Twelve proteins were successfully distinguished in (spiked) urine samples. The discrimination accuracy is 100% at the 500 nM protein concentration level. In addition, different strains of microorganisms (E. coli O157:H7, E.coli ER2738, P. aeruginosa CICC10204; P. aeruginosa CICC21954; B.subtilis CICC10071; B.subtilis CICC10275) can be discriminated successfully via this array.

Graphical abstract

A CD/AuNPs-based colorimetric array sensor is proposed for the discrimination of protein, offering a discrimination sensitivity low down to 2 nM. The accurate differentiations of microorganisms originated from same species are achieved.

Keywords

Colorimetric method Protein discrimination Microorganism discrimination Ratiometric assay Linear discriminant analysis Multi-channel array Aggregation Comparative binding Electrostatic interaction Hydrophobic interaction 

Notes

Acknowledgements

The authors appreciate financial supports from the Natural Science Foundation of China (21475017, 21727811), and Fundamental Research Funds for the Central Universities (N170506006).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3602_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1239 kb)

References

  1. 1.
    Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, Andersson AC, Angelidou P, Asplund A, Asplund C, Berglund L, Bergstrom K, Brumer H, Cerjan D, Ekstrom M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Bjorklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, Olsson I, Oster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson A, Skollermo A, Steen J, Stenvall M, Sterky F, Stromberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Walden A, Wan JH, Wernerus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Ponten F (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4:1920–1932CrossRefGoogle Scholar
  2. 2.
    Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron 22:2377–2381CrossRefGoogle Scholar
  3. 3.
    Hartwell L, Mankoff D, Paulovich A, Ramsey S, Swisher E (2006) Cancer biomarkers: a systems approach. Nat Biotechnol 24:905–908CrossRefGoogle Scholar
  4. 4.
    Larsson A, Johansson ME, Wangefjord S, Gaber A, Nodin B, Kucharzewska P, Welinder C, Belting M, Eberhard J, Johnsson A, Uhlen M, Jirstrom K (2011) Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. Br J Cancer 105:666–672CrossRefGoogle Scholar
  5. 5.
    Lu YX, Liu YY, Zhang SG, Wang S, Zhang SC, Zhang XR (2013) Aptamer-based plasmonic sensor array for discrimination of proteins and cells with the naked eye. Anal Chem 85:6571–6574CrossRefGoogle Scholar
  6. 6.
    Sun W, Lu Y, Mao J, Chang N, Yang J, Liu Y (2015) Multidimensional sensor for pattern recognition of proteins based on DNA-gold nanoparticles conjugates. Anal Chem 87:3354–3359CrossRefGoogle Scholar
  7. 7.
    Li D, Dong Y, Li B, Wu Y, Wang K, Zhang S (2015) Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria. Analyst 140:7672–7677CrossRefGoogle Scholar
  8. 8.
    Zakaria HM, Shah A, Konieczny M, Hoffmann JA, Nijdam AJ, Reeves ME (2013) Small molecule- and amino acid-induced aggregation of gold nanoparticles. Langmuir 29:7661–7673CrossRefGoogle Scholar
  9. 9.
    Sener G, Uzun L, Denizli A (2014) Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl Mater Interfaces 6:18395–18400CrossRefGoogle Scholar
  10. 10.
    Zhu X, Yang Q, Huang J, Suzuki I, Li G (2008) Colorimetric study of the interaction between gold nanoparticles and a series of amino acids. J Nanosci Nanotechnol 8:353–357CrossRefGoogle Scholar
  11. 11.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  12. 12.
    Li H, Kang Z, Liu Y, Lee ST (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253CrossRefGoogle Scholar
  13. 13.
    Wang Z, Xu C, Lu Y, Chen X, Yuan H, Wei G, Ye G, Chen J (2017) Fluorescence sensor array based on amino acid derived carbon dots for pattern-based detection of toxic metal ions. Sensors Actuators B Chem 241:1324–1330CrossRefGoogle Scholar
  14. 14.
    Mandani S, Sharma B, Dey D, Sarma TK (2015) Carbon nanodots as ligand exchange probes in au@C-dot nanobeacons for fluorescent turn-on detection of biothiols. Nanoscale 7:1802–1808CrossRefGoogle Scholar
  15. 15.
    Wang X, Long Y, Wang Q, Zhang H, Huang X, Zhu R, Teng P, Liang L, Zheng H (2013) Reduced state carbon dots as both reductant and stabilizer for the synthesis of gold nanoparticles. Carbon 64:499–506CrossRefGoogle Scholar
  16. 16.
    Lin X, Hai X, Wang N, Chen XW, Wang JH (2017) Dual-signal model array sensor based on GQDs/AuNPs system for sensitive protein discrimination. Anal Chim Acta 992:105–111CrossRefGoogle Scholar
  17. 17.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  18. 18.
    Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381CrossRefGoogle Scholar
  19. 19.
    Yang J, Chen W, Liu X, Zhang Y, Bai Y (2017) Hydrothermal synthesis and photoluminescent mechanistic investigation of highly fluorescent nitrogen doped carbon dots from amino acids. Mater Res Bull 89:26–32CrossRefGoogle Scholar
  20. 20.
    Jung HS, Chen X, Kim JS, Yoon J (2013) Recent progress in luminescent and colorimetric chemosensors for detection of thiols. Chem Soc Rev 42:6019–6031CrossRefGoogle Scholar
  21. 21.
    Wang J, Li YF, Huang CZ, Wu T (2008) Rapid and selective detection of cysteine based on its induced aggregates of cetyltrimethylammonium bromide capped gold nanoparticles. Anal Chim Acta 626:37–43CrossRefGoogle Scholar
  22. 22.
    Chah S, Hammond MR, Zare RN (2005) Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol 12:323–328CrossRefGoogle Scholar
  23. 23.
    Xu ZQ, Yang QQ, Lan JY, Zhang JQ, Peng W, Jin JC, Jiang FL, Liu Y (2016) Interactions between carbon nanodots with human serum albumin and gamma-globulins: the effects on the transportation function. J Hazard Mater 301:242–249CrossRefGoogle Scholar
  24. 24.
    Mao J, Lu Y, Chang N, Yang J, Yang J, Zhang S, Liu Y (2016) A nanoplasmonic probe as a triple channel colorimetric sensor array for protein discrimination. Analyst 141:4014–4017CrossRefGoogle Scholar
  25. 25.
    Mao J, Lu Y, Chang N, Yang J, Zhang S, Liu Y (2016) Multidimensional colorimetric sensor array for discrimination of proteins. Biosens Bioelectron 86:56–61CrossRefGoogle Scholar
  26. 26.
    Wei X, Wang Y, Zhao Y, Chen Z (2017) Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation. Biosens Bioelectron 97:332–337CrossRefGoogle Scholar
  27. 27.
    Wang F, Zhang X, Lu Y, Yang J, Jing W, Zhang S, Liu Y (2017) Continuously evolving 'chemical tongue' biosensor for detecting proteins. Talanta 165:182–187CrossRefGoogle Scholar
  28. 28.
    Yang J, Lu Y, Ao L, Wang F, Jing W, Zhang S, Liu Y (2017) Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of AuNPs-DNA conjugates. Sensors Actuators 245:66–73CrossRefGoogle Scholar
  29. 29.
    Wang F, Lu Y, Jing W, He L, Gao X, Liu Y (2017) Lab-on-nanoparticle as a multidimensional device for colorimetric discrimination of proteins. Microchim Acta 184:3265–3271CrossRefGoogle Scholar
  30. 30.
    Wei X, Chen Z, Tan L, Lou T, Zhao Y (2017) DNA-catalytically active gold nanoparticle conjugates-based colorimetric multidimensional sensor array for protein discrimination. Anal Chem 89:556–559CrossRefGoogle Scholar
  31. 31.
    Yang X, Li J, Pei H, Li D, Zhao Y, Gao J, Lu J, Shi J, Fan C, Huang Q (2013) Pattern recognition analysis of proteins using DNA-decorated catalytic gold nanoparticles. Small 9:2844–2849CrossRefGoogle Scholar
  32. 32.
    Li XN, Wen F, Creran B, Jeong YD, Zhang XR, Rotello VM (2012) Colorimetric protein sensing using catalytically amplified sensor arrays. Small 8:3589–3592CrossRefGoogle Scholar
  33. 33.
    Wang XY, Qin L, Zhou M, Lou ZP, Wei H (2018) Nanozyme sensor arrays for detecting versatile analytes from small molecules to proteins and cells. Anal Chem 90:11696–11702CrossRefGoogle Scholar
  34. 34.
    Qiu H, Pu F, Ran X, Liu CQ, Ren JS, Qu XG (2018) Nanozyme as artificial receptor with multiple readouts for pattern recognition. Anal Chem 90:11775–11779CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center for Analytical Sciences, Department of Chemistry, College of SciencesNortheastern UniversityShenyangChina

Personalised recommendations