Microchimica Acta

, 186:481 | Cite as

Photoelectrochemical determination of malathion by using CuO modified with a metal-organic framework of type Cu-BTC

  • Yu Cao
  • Luona Wang
  • Chengyin WangEmail author
  • Dawei SuEmail author
  • Yunling Liu
  • Xiaoya Hu
Original Paper


A photoelectrochemical (PEC) sensor was constructed for the detection of non-electroactive malathion. It is based on the use of a hierarchical CuO material derived from a Cu-BTC metal-organic framework (where BTC stands for benzene-1,3,5-tricarboxylic acid). The modified CuO was obtained by calcination of Cu-BTC at a high temperature (300 °C) and possesses a high photocurrent conversion efficiency. Under irradiation with visible light and in the presence of malathion, the formation of the CuO-malathion complex on the CuO gave rise to an increase in steric hindrance. This results in a decrease in photocurrent. This novel PEC detection method has a lower detection limit of 8.6 × 10−11 mol L−1 and a wide linear range (1.0 × 10−10 ~ 1.0 × 10−5 mol L−1).

Graphical abstract

Schematic presentation of the Cu-BTC MOF derived photoelectrochemical sensor for non-electroactive malathion detection.


Photocurrent Pesticides Calcination Steric hindrance Actual sample detection 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 21375116), a project funded by the priority academic program development of Jiangsu higher education institutions (PAPD), top-notch academic programs project of Jiangsu higher education institutions (TAPP), Jiangsu province research program on analytical methods and techniques on the shared platform of large-scale instruments and equipment (BZ 201409), Yangzhou university science and technology innovation cultivation fund (2017CXJ010), and open project of state key laboratory of inorganic synthesis and preparative chemistry, (Jilin University, China, No. 2019-26).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3597_MOESM1_ESM.doc (1.5 mb)
ESM 1 (DOC 1579 kb)


  1. 1.
    Berijani S, Assadi Y, Anbia M, Milani Hosseini M-R, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection-Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123(1):1–9CrossRefGoogle Scholar
  2. 2.
    Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2013) Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol 6(3):710–718CrossRefGoogle Scholar
  3. 3.
    Sun X, Wang X (2010) Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides. Biosens Bioelectron 25(12):2611–2614CrossRefGoogle Scholar
  4. 4.
    Morozova VS, Levashova AI, Eremin SA (2005) Determination of pesticides by enzyme immunoassay. J Anal Chem 60(3):202–217CrossRefGoogle Scholar
  5. 5.
    Wang Q, Yu P, Bai L, Bao R, Wang N, Cheng C, Liu Z, Yang M, Yang W, Guo Z (2017) Self-assembled nano-leaf/vein bionic structure of TiO2/MoS2 composites for photoelectric sensors. Nanoscale 9(46):18194–18201CrossRefGoogle Scholar
  6. 6.
    Ahmed MM, Kanimov KS, Moiz SA (2008) Photoelectric behavior of n-GaAs/orange dye, vinyl-ethynyl-trimethyl-piperidole/conductive glass sensor. Thin Solid Films 516(21):7822–7827CrossRefGoogle Scholar
  7. 7.
    Fan D, Bao C, Khan MS, Wang C, Zhang Y, Liu Q, Zhang X, Wei Q (2018) A novel label-free photoelectrochemical sensor based on N, S-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I. Biosens Bioelectron 106:14–20CrossRefGoogle Scholar
  8. 8.
    Dai Y, Kan X (2017) From non-electroactive to electroactive species: highly selective and sensitive detection based on a dual-template molecularly imprinted polymer electrochemical sensor. Chem Commun 53(86):11755–11758CrossRefGoogle Scholar
  9. 9.
    Dong J, Hou J, Jiang J, Ai S (2015) Innovative approach for the electrochemical detection of non-electroactive organophosphorus pesticides using oxime as electroactive probe. Anal Chim Acta 885:92–97CrossRefGoogle Scholar
  10. 10.
    Bavcon M, Trebse P, Zupancic-Kralj L (2003) Investigations of the determination and transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionisation detector. Chemosphere 50(5):595–601CrossRefGoogle Scholar
  11. 11.
    Yoshii K, Tonogai Y, Katakawa J, Ueno H, Nakamuro K (2007) Identification of carboxylesterase metabolites of residual malathion in wheat kernels using semi-micro radio liquid chromatography. J Health Sci 53(1):92–98CrossRefGoogle Scholar
  12. 12.
    Abnous K, Danesh N, Ramezani M, Alibolandi M, Emrani A, Lavaee P, Taghdisi S (2018) A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Microchim Acta 185(4):216CrossRefGoogle Scholar
  13. 13.
    Zhou H, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112(2):673–674CrossRefGoogle Scholar
  14. 14.
    Dang X, Zhao H, Wang X, Sailijiang T, Chen S, Quan X (2018) Photoelectrochemical aptasensor for sulfadimethoxine using g-C3N4 quantum dots modified with reduced graphene oxide. Microchim Acta 185(7):345CrossRefGoogle Scholar
  15. 15.
    Cheng W, Pan J, Yang J, Zheng Z, Lu F, Chen Y, Gao W (2018) A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO2 and visible-light photoelectrochemical activity. Microchim Acta 185:263CrossRefGoogle Scholar
  16. 16.
    Suh MP, Park HJ, Prasad TK, Lim D-W (2012) Hydrogen storage in metal-organic frameworks. Chem Rev 112(2):782–835CrossRefGoogle Scholar
  17. 17.
    Zhu L, Liu XQ, Jiang H, Sun L (2017) Metal-organic frameworks for heterogeneous basic catalysis. Chem Rev 117(12):8129–8176CrossRefGoogle Scholar
  18. 18.
    Cao X, Tan C, Sindoro M, Zhang H (2017) Hybrid micro−/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem Soc Rev 46(10):2660–2677CrossRefGoogle Scholar
  19. 19.
    Wu HB, Lou XW (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3(12):9252CrossRefGoogle Scholar
  20. 20.
    Guan C, Liu X, Ren W, Li X, Cheng C, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater 7(12):1602391CrossRefGoogle Scholar
  21. 21.
    Ji D, Zhou H, Tong Y, Wang J, Zhu M, Chen T, Yuan A (2017) Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem Eng J 313:1623–1632CrossRefGoogle Scholar
  22. 22.
    Ba N, Zhu L, Zhang G, Li J, Li H (2016) Facile synthesis of 3D CuO nanowire bundle and its excellent gas sensing and electrochemical sensing properties. Sensor Actuators B Chem 227:142–148CrossRefGoogle Scholar
  23. 23.
    Xi S, Zhu Y, Yang Y, Liu Y (2017) Direct synthesis of MnO2 nanorods on carbon cloth as flexible supercapacitor electrode. J Nanomater 2017:1–8CrossRefGoogle Scholar
  24. 24.
    Zhu Y, Xu Z, Yan K, Zhao H, Zhang J (2017) One-step synthesis of CuO-Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-Cysteine. ACS Appl Mater Interfaces 9(46):40452–40460CrossRefGoogle Scholar
  25. 25.
    Singha S, Saha A, Goswami S, Dey SK, Payra S, Banerjee S, Kumar S, Saha R (2018) A metal organic framework to CuO nanospheres of uniform morphology for the synthesis of alpha-aminonitriles under solvent-free condition along with crystal structure of the framework. Cryst Growth Des 18(1):189–199CrossRefGoogle Scholar
  26. 26.
    Banerjee A, Singh U, Aravindan V, Srinivasan M, Ogale S (2013) Synthesis of CuO nanostructures from Cu-based metal organic framework (MOE-199) for application as anode for Li-ion batteries. Nano Energy 2(6):1158–1163CrossRefGoogle Scholar
  27. 27.
    Zhang S, Liu H, Liu P, Yang Z, Feng X, Huo F, Lu X (2015) A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1). Nanoscale 7(21):9411–9415CrossRefGoogle Scholar
  28. 28.
    Wang Y, Lu Y, Zhan W, Xie Z, Kuang Q, Zheng L (2015) Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties. J Mater Chem A 3(24):12796–12803CrossRefGoogle Scholar
  29. 29.
    Hu X, Li C, Lou X, Yang Q, Hu B (2017) Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J Mater Chem A 5(25):12828–12837CrossRefGoogle Scholar
  30. 30.
    Zhang YF, Qiu LG, Yuan YP, Zhu YJ, Jiang X, Xiao JD (2014) Magnetic Fe3O4@C/Cu and Fe3O4@CuO core-shell composites constructed from MOF-based materials and their photocatalytic properties under visible light. Appl Catal B Environ 144:863–869CrossRefGoogle Scholar
  31. 31.
    Cao Y, Ma Y, Wang T, Wang X, Huo Q, Liu Y (2016) Facile fabricating hierarchically porous metal-organic frameworks via a template-free strategy. Cryst Growth Des 16(1):504–510CrossRefGoogle Scholar
  32. 32.
    Cao Y, Wang L, Shen C, Wang C, Hu X, Wang G (2019) An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sensors Actuators B Chem 283:487–494CrossRefGoogle Scholar
  33. 33.
    Wu R, Qian X, Yu F, Liu H, Zhou K, Wei J, Huang Y (2013) MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J Mater Chem 1(37):11126–11129CrossRefGoogle Scholar
  34. 34.
    Huo D, Li Q, Zhang Y, Hou C, Lei Y (2014) A highly efficient organophosphorus pesticides sensor based on CuO nanowires-SWCNTs hybrid nanocomposite. Sensors Actuators B Chem 199:410–417CrossRefGoogle Scholar
  35. 35.
    Soomro RA, Hallam KR, Ibupoto ZH, Tahira A, Sherazi STH, Sirajjuddin MSS, Willander M (2016) Amino acid assisted growth of CuO nanostructures and their potential application in electrochemical sensing of organophosphate pesticide. Electrochim Acta 190:972–979CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and MonitoringYangzhou UniversityYangzhouChina
  2. 2.School of Mathematical and Physical SciencesUniversity of TechnologySydneyAustralia
  3. 3.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of ChemistryJilin UniversityChangchunChina

Personalised recommendations