Microchimica Acta

, 186:462 | Cite as

Metal organic framework HKUST-1 modified with carboxymethyl-β-cyclodextrin for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs

  • Xiaodong Sun
  • Yu TaoEmail author
  • Yingxiang DuEmail author
  • Wen Ding
  • Cheng Chen
  • Xiaofei Ma
Original Paper


This work shows that the metal organic framework (MOF) HKUST-1 of type Cu3(BTC)2 (also referred to as MOF-199; a face-centered-cubic MOF containing nanochannels) is a most viable coating for use in enantioseparation in capillary electrochromatography (CEC). A HKUST-1 modified capillary was prepared and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, elemental analysis and thermogravimetric analysis. CEC-based enantioseparation of the basic drugs propranolol (PRO), esmolol (ESM), metoprolol (MET), amlodipine (AML) and sotalol (SOT) was performed by using carboxymethyl-β-cyclodextrin as the chiral selector. Compared with a fused-silica capillary, the resolutions are improved (ESM: 1.79; MET: 1.80; PRO: 4.35; SOT: 1.91; AML: 2.65). The concentration of chiral selector, buffer pH value, applied voltage and buffer concentration were optimized, and the reproducibilities of the migration times and Rs values were evaluated.

Graphical abstract

Schematic presentation of the preparation of a HKUST-1@capillary for enantioseparation of racemic drugs. Cu(NO3)2 and 1,3,5-benzenetricarboxylic acid (BTC) were utilized to prepare the HKUST-1@capillary. Then the capillary was applied to construct capillary electrochromatography system with carboxymethyl-β-cyclodextrin (CM-β-CD) for separation of basic racemic drugs.


Open-tubular capillary Capillary electrochromatography Enantioseparation Carboxymethyl-β-cyclodextrin Metal frame work HKUST-1 MOF-199 Mechanism Basic drugs 



This work was supported by the Natural Science Foundation of Jiangsu Province (Program No.: BK20141353).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3584_MOESM1_ESM.docx (329 kb)
ESM 1 (DOCX 329 kb)


  1. 1.
    Guihen E, Glennon JD (2004) Recent highlights in stationary phase design for open-tubular capillary electrochromatography. J Chromatogr A 1044:67–81CrossRefGoogle Scholar
  2. 2.
    Liu Z, Otsuka K, Terabe S (2002) Evaluation of extended light path capillary and etched capillary for use in open tubular capillary electrochromatography. J Chromatogr A 961:285–291CrossRefGoogle Scholar
  3. 3.
    Yang L, Guihen E, Holmes JD, Loughran M, O'Sulliva GP, Glennon JD (2005) Gold nanoparticle-modified etched capillaries for open-tubular capillary electrochromatography. Anal Chem 77:1840–1846CrossRefGoogle Scholar
  4. 4.
    Gong Z, Duan L, Tang A (2015) Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182:1297–1304CrossRefGoogle Scholar
  5. 5.
    Liu Z, Du Y, Feng Z (2018) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184:583–593CrossRefGoogle Scholar
  6. 6.
    Zhang Q, Du Y, Du S (2014) Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis. J Chromatogr A 1339:185–191CrossRefGoogle Scholar
  7. 7.
    Li L, Yang F, Wang H, Yan X (2013) Metal-organic framework poly methylmethacrylate composites for open-tubular capillary electrochromatography. J Chromatogr A 1316:97–103CrossRefGoogle Scholar
  8. 8.
    Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444CrossRefGoogle Scholar
  9. 9.
    Zhou H, Long J, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674CrossRefGoogle Scholar
  10. 10.
    Huang H, Lin C, Wu C, Cheng Y, Lin C (2013) Metal organicframework-organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Anal Chim Acta 779:96–103CrossRefGoogle Scholar
  11. 11.
    Li J, Sculley J (2011) Zhou H metal-organic frameworks for separations. Chem Rev 112:869–932CrossRefGoogle Scholar
  12. 12.
    Yu Y, Ren Y, Shen W, Deng H, Gao Z (2013) Applications of metal-organicframeworks as stationary phases in chromatography. TrAC Trends Anal Chem 50:33–41CrossRefGoogle Scholar
  13. 13.
    Yang C, Yan X (2011) Metal-organic framework MIL-101 (Cr) for high-performance liquid chromatographic separation of substitutedaromatics. Anal Chem 83:7144–7150CrossRefGoogle Scholar
  14. 14.
    Liu S, Yang C, Wang S, Yan X (2012) Metal-organic frameworks for reverse-phase high-performance liquid chromatography. Analyst 137:816–818CrossRefGoogle Scholar
  15. 15.
    Yu Y, Ren Y, Shen W, Deng H, Gao Z (2013) Applications of metal-organic frame-works as stationary phases in chromatography. TrAC Trends Anal Chem 50:33–41CrossRefGoogle Scholar
  16. 16.
    Zhang K, Cai S, Yan Y, He Z, Lin H, Huang X, Zheng R, Fan J, Zhang W (2017) Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J Chromatogr A 1519:100–109CrossRefGoogle Scholar
  17. 17.
    Chen B, Liang C, Yang J, Contreras DS, Clancy YL, Lobkovsky EB, Yaghi OM, Dai S (2006) A microporous metal-organic framework forgas-chromatographic separation of alkanes. Angew Chem 118:1418–1421CrossRefGoogle Scholar
  18. 18.
    Ye N, Ma J, An J, Li J, Cai Z, Zong H (2016) Separation of amino acid enantiomers by a capillary modified with a metal-organic framework. RSC Adv 6:41587–41593CrossRefGoogle Scholar
  19. 19.
    Ma J, Ye N, Li J (2016) Covalent bonding of homochiral metal-organic framework in capillaries for stereoisomer separation by capillary electrochromatography. Electrophoresis 37:601–608CrossRefGoogle Scholar
  20. 20.
    Yu L, Yang C, Yan X (2014) Room temperature fabrication of post-modified zeolitic imidazolate framework-90 as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 1343:188–194CrossRefGoogle Scholar
  21. 21.
    Tang P, Bao T, Chen Z (2016) Novel Zn-based MOFs stationary phase with large pores for capillary electrochromatography. Electrophoresis 37:2181–2189CrossRefGoogle Scholar
  22. 22.
    Yang S, Ye F, Lv Q, Zhang C, Shen S, Zhao S (2014) Incorporation of metal-organic framework HKUST-1 into porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J Chromatogr A 1360:143–149CrossRefGoogle Scholar
  23. 23.
    El-Hankari S, Huo J, Ahmed A, Zhang H, Bradshaw D (2014) Surface etching of HKUST-1 promoted via supramolecular interactions for chromatography. J Mater Chem A 2:13479–13485CrossRefGoogle Scholar
  24. 24.
    Münch AS, Mertens FO (2012) HKUST-1 as an open metal site gas chromatographic stationary phase-capillary preparation, separation of small hydrocarbons and electron donating compounds, determination of thermodynamic data. J Mater Chem 22:10228–10234CrossRefGoogle Scholar
  25. 25.
    Ahmed A, Forster M, Clowes R, Bradshaw D, Myers P, Zhang H (2013) Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. J Mater Chem A 1:3276–3286CrossRefGoogle Scholar
  26. 26.
    Bao T, Zhang J, Zhang W, Chen Z (2015) Growth of metal-organic framework HKUST-1 in capillary using liquid-phase epitaxy for open-tubular capillary electrochromatography and capillary liquid chromatography. J Chromatogr A 1381:239–246CrossRefGoogle Scholar
  27. 27.
    Prestipino C, Regli L, Vitillo J, Bonino F, Damin A, Lamberti C, Zecchina A, Solari P, Kongshaug K, Bordiga S (2006) Local structure of framework cu(II) in HKUST-1metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chem Mater 18:1337–1346CrossRefGoogle Scholar
  28. 28.
    Biemmi E, Scherb C, Bein T (2007) Oriented growth of the metal organic framework Cu3(BTC)2(H2O)3·xH2O tunable with functionalized self-assembled mono-layers. J Am Chem Soc 129:8054–8055CrossRefGoogle Scholar
  29. 29.
    Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sterne-mann C, Evers F, Zacher D, Fischer RA (2007) Step-by-step route for the synthesis ofmetal-organic frameworks. J Am Chem Soc 129:15118–15119CrossRefGoogle Scholar
  30. 30.
    Xu Y, Lv W, Ren C, Niu X, Chen H, Chen X (2017) In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. J Chromatogr A 1532:223–231CrossRefGoogle Scholar
  31. 31.
    Qu Q, Si Y, Xuan H, Zhang K, Chen X, Ding Y, Feng S, Xu H (2017) A nanocrystalline metal organic framework confined in the fibrous pores of core-shell silica particles for improved HPLC separation. Microchem Acta 6149:1–8Google Scholar
  32. 32.
    Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315CrossRefGoogle Scholar
  33. 33.
    Buschmann HJ, Knittel D, Schollmeyer E (2001) New textile applications of cyclodextrins. J Incl Phenom Macro 40:169–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)China Pharmaceutical UniversityNanjingPeople’s Republic of China
  2. 2.State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingPeople’s Republic of China

Personalised recommendations