Microchimica Acta

, 186:457 | Cite as

A ketone-functionalized carbazolic porous organic framework for sensitive fluorometric determination of p-nitroaniline

  • Li Qian
  • Haitao Hong
  • Mingxi Han
  • Congying Xu
  • Song Wang
  • Zhiyong GuoEmail author
  • Dan YanEmail author
Original Paper


A novel ketone-functionalized carbazolic porous framework named PBPMCz is presented for fluorometric determination of p-nitroaniline (PNA). PBPMCz was prepared by FeCl3-promoted oxidative coupling polymerization of 1,3,5-tris((4-(9H-carbazol-9-yl)phenyl)methanone-1-yl)benzene. The polymer possesses a BET surface area of above 907 m2∙g−1 with a pore volume of 0.72 cm3∙g−1. Compared to the ketone-free framework, the green fluorescence of the probe PBPMCz is more strongly quenched by PNA. Figures of merit include (a) excitation/emission wavelengths of 366/540 nm; (b) a Stern-Volmer constant (Ksv) of 2.2 × 104 M−1, and (c) a detection limit of 1.1 μM. Furthermore, PBPMCz shows different quenching behaviors of PNA compared with o-nitroaniline and m-nitroaniline. The excellent performance of the fluorescent probe is ascribed to the abundant carbazole sites and ketone groups in PBPMCz. These facilitate the electron transfer and hydrogen-bonding interactions between PNA and the polymer.

Graphical abstract

Schematic presentation of a luminescent carbazolic porous organic framework (CzPOF) modified with keto groups. It shows ultra-sensitivity to quenching by PNA over other nitroaniline isomers.


Carbazolic porous framework Oxidative coupling Fluorescence sensing Nitroaniline isomers Quenching mechanism Detection limit Electron transfer 



This work was supported by the financial support from the National Natural Science Foundation of China (Grant Nos. 51703031 and 21401053).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3581_MOESM1_ESM.docx (552 kb)
ESM 1 (DOCX 552 kb)


  1. 1.
    Shanmugaraju S, Mukherjee PS (2015) pi-Electron rich small molecule sensors for the recognition of nitroaromatics. Chem Commun 51(89):16014–16032CrossRefGoogle Scholar
  2. 2.
    Germain ME, Knapp MJ (2009) Optical explosives detection: from color changes to fluorescence turn-on. Chem Soc Rev 38(9):2543–2555CrossRefGoogle Scholar
  3. 3.
    Harvey JW, Keitt AS (1983) Studies of the efficacy and potential hazards of methylene blue therapy in aniline-induced methaemoglobinaemia. Br J Haematol 54(1):29–41CrossRefGoogle Scholar
  4. 4.
    Vernot EH, MacEwen JD, Haun CC, Kinkead ER (1977) Acute toxicity and skin corrosion data for some organic and inorganic compounds and aqueous solutions. Toxicol Appl Pharmacol 42(2):417–423CrossRefGoogle Scholar
  5. 5.
    Chiang J-S, Huang S-D (2008) Simultaneous derivatization and extraction of anilines in waste water with dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometric detection. Talanta 75(1):70–75CrossRefGoogle Scholar
  6. 6.
    Jen JF, Chang CT, Yang TC (2001) On-line microdialysis-high-performance liquid chromatographic determination of aniline and 2-chloroaniline in polymer industrial wastewater. J Chromatogr A 930(1–2):119–125CrossRefGoogle Scholar
  7. 7.
    Fekete A, Malik AK, Kumar A, Schmitt-Kopplin P (2010) Amines in the environment. Crit Rev Anal Chem 40(2):102–121CrossRefGoogle Scholar
  8. 8.
    Hattori T, Okamura H, Asaoka S, Fukushi K (2017) Capillary zone electrophoresis determination of aniline and pyridine in sewage samples using transient isotachophoresis with a system-induced terminator. J Chromatogr A 1511:132–137CrossRefGoogle Scholar
  9. 9.
    Nagarkar SS, Joarder B, Chaudhari AK, Mukherjee S, Ghosh SK (2013) Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew Chem Int Ed 52(10):2881–2885CrossRefGoogle Scholar
  10. 10.
    Wu P, Liu Y, Li Y, Jiang M, Li X-l, Shi Y, Wang J (2016) A cadmium(ii)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J Mater Chem A 4(42):16349–16355CrossRefGoogle Scholar
  11. 11.
    Rochat S, Swager TM (2013) Conjugated amplifying polymers for optical sensing applications. ACS Appl Mater Interfaces 5(11):4488–4502CrossRefGoogle Scholar
  12. 12.
    Gole B, Bar AK, Mukherjee PS (2014) Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and Electron deficiency. Chem Eur J 20(8):2276–2291CrossRefGoogle Scholar
  13. 13.
    Das P, Mandal SK (2018) Understanding the effect of an amino group on the selective and ultrafast detection of TNP in water using fluorescent organic probes. J Mater Chem C 6(13):3288–3297CrossRefGoogle Scholar
  14. 14.
    Ma H, Li B, Zhang L, Han D, Zhu G (2015) Targeted synthesis of core–shell porous aromatic frameworks for selective detection of nitro aromatic explosives via fluorescence two-dimensional response. J Mater Chem A 3(38):19346–19352CrossRefGoogle Scholar
  15. 15.
    Karthik P, Pandikumar A, Preeyanghaa M, Kowsalya M, Neppolian B (2017) Amino-functionalized MIL-101(Fe) metal-organic framework as a viable fluorescent probe for nitroaromatic compounds. Microchim Acta 184(7):2265–2273CrossRefGoogle Scholar
  16. 16.
    Chen Q, Han B-H (2018) Microporous Polycarbazole materials: from preparation and properties to applications. Macromol Rapid Commun 39(9):1800040CrossRefGoogle Scholar
  17. 17.
    Guo Z, Song X, Lei H, Wang H, Su S, Xu H, Qian G, Zhang H, Chen B (2015) A ketone functionalized luminescent terbium metal–organic framework for sensing of small molecules. Chem Commun 51(2):376–379CrossRefGoogle Scholar
  18. 18.
    Zhang X, Lu J, Zhang J (2014) Porosity enhancement of Carbazolic porous organic frameworks using dendritic building blocks for gas storage and separation. Chem Mater 26(13):4023–4029CrossRefGoogle Scholar
  19. 19.
    Chen L, Honsho Y, Seki S, Jiang D (2010) Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous Polyphenylene framework as antenna. J Am Chem Soc 132(19):6742–6748CrossRefGoogle Scholar
  20. 20.
    Jiang J-X, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI (2007) Conjugated microporous poly(aryleneethynylene) networks. Angew Chem Int Ed 46(45):8574–8578CrossRefGoogle Scholar
  21. 21.
    Qiao S, Huang W, Wei H, Wang T, Yang R (2015) Topology-directed design and synthesis of carbazole-based conjugated microporous networks for gas storage. RSC Adv 5(87):70904–70909CrossRefGoogle Scholar
  22. 22.
    Wei F, Cai X, Nie J, Wang F, Lu C, Yang G, Chen Z, Ma C, Zhang Y (2018) A 1,2,3-triazolyl based conjugated microporous polymer for sensitive detection of p-nitroaniline and Au nanoparticle immobilization. Polym Chem 9(27):3832–3839CrossRefGoogle Scholar
  23. 23.
    Deshmukh A, Bandyopadhyay S, James A, Patra A (2016) Trace level detection of nitroanilines using a solution processable fluorescent porous organic polymer. J Mater Chem C 4(20):4427–4433CrossRefGoogle Scholar
  24. 24.
    Yuan H, Li D, Liu Y, Xu X, Xiong C (2015) Nitrogen-doped carbon dots from plant cytoplasm as selective and sensitive fluorescent probes for detecting p-nitroaniline in both aqueous and soil systems. Analyst 140(5):1428–1431CrossRefGoogle Scholar
  25. 25.
    Bagheri M, Masoomi MY, Morsali A (2017) Highly sensitive and selective ratiometric fluorescent metal–organic framework sensor to nitroaniline in presence of nitroaromatic compounds and VOCs. Sensors Actuators B Chem 243:353–360CrossRefGoogle Scholar
  26. 26.
    Yang Y-J, Wang M-J, Zhang K-L (2016) A novel photoluminescent Cd(ii)–organic framework exhibiting rapid and efficient multi-responsive fluorescence sensing for trace amounts of Fe3+ ions and some NACs, especially for 4-nitroaniline and 2-methyl-4-nitroaniline. J Mater Chem C 4(48):11404–11418CrossRefGoogle Scholar
  27. 27.
    Wang J-H, Li G-Y, Liu X-J, Feng R, Zhang H-J, Zhang S-Y, Zhang Y-H (2018) A fluorescent anthracene-based metal–organic framework for highly selective detection of nitroanilines. Inorg Chim Acta 473:70–74CrossRefGoogle Scholar
  28. 28.
    Barman N, Singha D, Sahu K (2013) Fluorescence quenching of hydrogen-bonded Coumarin 102-phenol complex: effect of excited-state hydrogen bonding strength. J Phys Chem A 117(19):3945–3953CrossRefGoogle Scholar
  29. 29.
    Wan X-Y, Jiang F-L, Liu C-P, Zhou K, Chen L, Gai Y-L, Yang Y, Hong M-C (2015) Rapid and discriminative detection of nitro aromatic compounds with high sensitivity using two zinc MOFs synthesized through a temperature-modulated method. J Mater Chem A 3(44):22369–22376CrossRefGoogle Scholar
  30. 30.
    Sang N, Zhan C, Cao D (2015) Highly sensitive and selective detection of 2,4,6-trinitrophenol using covalent-organic polymer luminescent probes. J Mater Chem A 3(1):92–96CrossRefGoogle Scholar
  31. 31.
    Qi X, Jin Y, Li N, Wang Z, Wang K, Zhang Q (2017) A luminescent heterometallic metal–organic framework for the naked-eye discrimination of nitroaromatic explosives. Chem Commun 53(74):10318–10321CrossRefGoogle Scholar
  32. 32.
    Yu Z, Wang F, Lin X, Wang C, Fu Y, Wang X, Zhao Y, Li G (2015) Selective fluorescence sensors for detection of nitroaniline and metal ions based on ligand-based luminescent metal-organic frameworks. J Solid State Chem 232:96–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringFuzhou UniversityFuzhouPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and DevicesHubei University of Arts and ScienceXiangyangPeople’s Republic of China
  3. 3.Testing CenterFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations