Advertisement

Microchimica Acta

, 186:458 | Cite as

A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram

  • Ying Wang
  • Xiaofei Yu
  • Yuhong Chang
  • Cuiling Gao
  • Jing ChenEmail author
  • Xiaoli ZhangEmail author
  • Jinhua ZhanEmail author
Original Paper
  • 69 Downloads

Abstract

A sponge inspired three dimensional flexible aluminum foil based ZnO nanosheet array substrate is described for use in real-world surface enhanced Raman spectroscopic detection. Gold and silver nanoparticles were employed to form numerous hot spots on uniformly grown ZnO nanosheets on the substrate. This flexible spongy substrate can extract analytes (such as the fungicide thiram) from various complex sample surfaces by physical swabbing. Specifically, this substrate was applied to detect thiram on the surface of fruits and vegetables. Non-destructive recycling detection with a relative standard deviation of 6.1% was accomplished by monitoring the characteristic Raman peak at 1382 cm−1. This modified substrate has a low detection limit (0.2 ng cm−2 of thiram for apple and tomato), outstanding uniformity (relative standard deviation = 8.9%) and thermal stability (relative standard deviation = 0.9%).

Graphical abstract

Schematic representation of using a aluminum foil modified with ZnO nanosheets as a flexible and recyclable substrate for SERS analysis of pollutants. The substrate can be cleaned after use by UV irradiation.

Keywords

Surface-enhanced Raman spectroscopy Swabbing extraction Recyclable substrate Flexible substrate On-site detection 

Notes

Acknowledgements

This work was supported by the financial support from the National Natural Science Foundation of China (NSFC 21575077, 21750110438, 21876099), the Science and Technology Development Plans of Shandong Province (ZR2017ZC0227) and the Fundamental Research Funds of Shandong University (2016JC030).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3579_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1.76 mb)

References

  1. 1.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRefGoogle Scholar
  2. 2.
    Zhang L, Liu T, Liu K, Han L, Yin Y, Gao C (2015) Gold Nanoframes by nonepitaxial growth of au on AgI nanocrystals for surface-enhanced Raman spectroscopy. Nano Lett 15(7):4448–4454CrossRefGoogle Scholar
  3. 3.
    Sykes EA, Chen J, Zheng G, Chan WCW (2014) Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8(6):5696–5706CrossRefGoogle Scholar
  4. 4.
    Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M (2014) Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces 6(24):21931–21937CrossRefGoogle Scholar
  5. 5.
    Zhang C, Gao Y, Yang N, You T, Chen H, Yin P (2018) Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Microchim Acta 185(2):90CrossRefGoogle Scholar
  6. 6.
    Fu C, Wang Y, Chen G, Yang L, Xu S, Xu W (2015) Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection. Anal Chem 87(19):9555–9558CrossRefGoogle Scholar
  7. 7.
    Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2 75(0):790–798CrossRefGoogle Scholar
  8. 8.
    Ren W, Zhu C, Wang E (2012) Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4(19):5902–5909CrossRefGoogle Scholar
  9. 9.
    Jensen L, Aikens CM, Schatz GC (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37(5):1061–1073CrossRefGoogle Scholar
  10. 10.
    Y-e S, Wang W, Zhan J (2016) A positively charged silver nanowire membrane for rapid on-site swabbing extraction and detection of trace inorganic explosives using a portable Raman spectrometer. Nano Res 9(8):2487–2497CrossRefGoogle Scholar
  11. 11.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392-395.https://www.nature.com/articles/nature08907#supplementary-information CrossRefGoogle Scholar
  12. 12.
    Martín A, Wang JJ, Iacopino D (2014) Flexible SERS active substrates from ordered vertical au nanorod arrays. RSC Adv 4(38):20038–20043CrossRefGoogle Scholar
  13. 13.
    Fan M, Zhang Z, Hu J, Cheng F, Wang C, Tang C, Lin J, Brolo AG, Zhan H (2014) Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater Lett 133:57–59CrossRefGoogle Scholar
  14. 14.
    Li D, Duan H, Wang Y, Zhang Q, Cao H, Deng W, Li D (2017) On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Microchim Acta 185(1):10CrossRefGoogle Scholar
  15. 15.
    Duan N, Shen M, Wu S, Zhao C, Ma X, Wang Z (2017) Graphene oxide wrapped Fe3O4@au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Microchim Acta 184(8):2653–2660CrossRefGoogle Scholar
  16. 16.
    Wang J, Yang L, Liu B, Jiang H, Liu R, Yang J, Han G, Mei Q, Zhang Z (2014) Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their Ultratrace residues in open environment. Anal Chem 86(7):3338–3345CrossRefGoogle Scholar
  17. 17.
    Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016) Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88(4):2149–2155CrossRefGoogle Scholar
  18. 18.
    Wang P, Wu L, Lu Z, Li Q, Yin W, Ding F, Han H (2017) Gecko-inspired Nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal Chem 89(4):2424–2431CrossRefGoogle Scholar
  19. 19.
    Zhu Y, Li M, Yu D, Yang L (2014) A novel paper rag as ‘D-SERS’ substrate for detection of pesticide residues at various peels. Talanta 128:117–124CrossRefGoogle Scholar
  20. 20.
    Barbillon G, Sandana VE, Humbert C, Bélier B, Rogers DJ, Teherani FH, Bove P, McClintock R, Razeghi M (2017) Study of au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing. J Mater Chem C 5(14):3528–3535CrossRefGoogle Scholar
  21. 21.
    Yang Y, Liu J, Fu Z-W, Qin D (2014) Galvanic replacement-free deposition of au on ag for Core–Shell Nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc 136(23):8153–8156CrossRefGoogle Scholar
  22. 22.
    Ansar SM, Ameer FS, Hu W, Zou S, Pittman CU, Zhang D (2013) Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water. Nano Lett 13(3):1226–1229CrossRefGoogle Scholar
  23. 23.
    Zhou Y, Lee C, Zhang J, Zhang P (2013) Engineering versatile SERS-active nanoparticles by embedding reporters between au-core/ag-shell through layer-by-layer deposited polyelectrolytes. J Mater Chem C 1(23):3695–3699CrossRefGoogle Scholar
  24. 24.
    Liu B, Tan H, Chen Y (2013) Visual detection of silver(I) ions by a chromogenic reaction catalyzed by gold nanoparticles. Microchim Acta 180(5):331–339CrossRefGoogle Scholar
  25. 25.
    Yang L, Wang W, Jiang H, Zhang Q, Shan H, Zhang M, Zhu K, Lv J, He G, Sun Z (2017) Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with ag nanoparticles. Sensors Actuators B Chem 242:932–939CrossRefGoogle Scholar
  26. 26.
    Saute B, Narayanan R (2011) Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst 136(3):527–532CrossRefGoogle Scholar
  27. 27.
    Markina NE, Markin AV, Zakharevich AM, Goryacheva IY (2017) Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction. Microchim Acta 184(10):3937–3944CrossRefGoogle Scholar
  28. 28.
    Bu Y, Liu K, Hu Y, Kaneti YV, Brioude A, Jiang X, Wang H, Yu A (2017) Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates. Microchim Acta 184(8):2805–2813CrossRefGoogle Scholar
  29. 29.
    Kang JS, Hwang SY, Lee CJ, Lee MS (2002) SERS of Dithiocarbamate pesticides adsorbed on silver surface; Thiram. Bull Kor Chem Soc 23:1604–1610CrossRefGoogle Scholar
  30. 30.
    Chao YC, Chen CY, Lin CA, He JH (2011) Light scattering by nanostructured anti-reflection coatings. Energy Environ Sci 4(9):3436–3441CrossRefGoogle Scholar
  31. 31.
    Qiu B, Xing M, Yi Q, Zhang J (2015) Chiral carbonaceous nanotubes modified with Titania nanocrystals: Plasmon-free and recyclable SERS sensitivity. Angew Chem Int Ed 54(36):10643–10647CrossRefGoogle Scholar
  32. 32.
    Alessandri I, Ferroni M (2009) Exploiting optothermal conversion for nanofabrication: site-selective generation of au/TiO2 inverse opals. J Mater Chem 19(42):7990–7994CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, Department of ChemistryShandong UniversityJinanChina
  2. 2.Shandong Institute of Product Quality Supervision and InspectionJinanChina
  3. 3.Suzhou Institute of Shandong UniversitySuzhouChina
  4. 4.National Engineering Research Center for Colloidal MaterialsShandong UniversityJinanChina

Personalised recommendations