Microchimica Acta

, 186:450 | Cite as

Simultaneous voltammetric determination of guanine and adenine using MnO2 nanosheets and ionic liquid-functionalized graphene combined with a permeation-selective polydopamine membrane

  • Shuang Zhang
  • Xuming ZhuangEmail author
  • Dandan Chen
  • Feng Luan
  • Tao HeEmail author
  • Chunyuan Tian
  • Lingxin ChenEmail author
Original Paper


Guanine and adenine in blood samples can be detected by using an electrochemical sensor based on the use of manganese dioxide (MnO2) nanosheets and ionic liquid functionalized graphene (IL-GR) bound to a polydopamine (PDA) membrane. Both guanine and adenine undergo a redox reaction on the surface of the modified electrode. Cyclic voltammetry and differential pulse voltammetry were used to evaluate the electrochemical behavior of a glassy carbon electrode (GCE) modified with PDA/MnO2/IL-GR. The sensor allows for individual as well as simultaneous determination of guanine and adenine. The working voltage of differential pulse voltammetry at which data were acquired to establish the calibration plot: 0.6–1.2 V for guanine, 0.8–1.4 V for adenine, 0.4–1.4 V for mixture of guanine and adenine. A wide detection range (10–300 μM), low detection limits (guanine: 0.25 μM; adenine: 0.15 μM), selectivity and reproducibility are demonstrated. The modified GCE was successfully applied to the analysis of guanine and adenine in spiked fetal bovine serum and mouse whole blood samples.

Graphical abstract

An electrochemical sensor is presented for the determination of guanine (G) and adenine (A) based on MnO2 nanosheets, ionic liquid functionalized graphene (IL-graphene) and polydopamine membrane.


Electrochemical Nanocomposites Sensor Guanine Adenine Fetal bovine serum Mouse whole blood 



This work was financially supported by the National Natural Science Foundation of China (21778047, 21675138), and the Department of Science and Technology of Shandong Province of China (No. 2018GSF116011, GG201709290055) and of Yantai City of China (No. 2017ZH093).

Compliance with ethical standards

There are no conflicts to declare.

Supplementary material

604_2019_3577_MOESM1_ESM.doc (13.3 mb)
ESM 1 (DOC 13.3 MB)


  1. 1.
    Wang H, Zhang H, Xu L, Gan T, Huang K, Liu Y (2014) Electrochemical biosensor for simultaneous determination of guanine and adenine based on dopamine-melanin colloidal nanospheres-graphene composites. J Solid State Electrochem 18(9):2435–2442CrossRefGoogle Scholar
  2. 2.
    Li S, Li P, Dong T, Tsim K (2015) Determination of nucleosides in natural Cordyceps sinensis and cultured Cordyceps mycelia by capillary electrophoresis. Chin J Pharm Anal 22(1):144–150Google Scholar
  3. 3.
    Ibrahim H, Temerk Y, Farhan N (2016) Electrochemical sensor for individual and simultaneous determination of guanine and adenine in biological fluids and in DNA based on a nano-in-ceria modified glassy carbon paste electrode. RSC Adv 6(93):90220–90231CrossRefGoogle Scholar
  4. 4.
    Yang F, Guan J, Li S (2007) Fast simultaneous determination of 14 nucleosides and nucleobases in cultured cordyceps using ultra-performance liquid chromatography. Talanta 73(2):269–273CrossRefGoogle Scholar
  5. 5.
    Thomas B, Matson S, Chopra V, Sun L, Sharma S, Hersch S, Rosas H, Scherzer C, Ferrante R, Matson W (2013) A novel method for detecting 7-methyl guanine reveals aberrant methylation levels in Huntington disease. Anal Biochem 436(2):112–120CrossRefGoogle Scholar
  6. 6.
    Lin H, Xu D, Chen H (1997) Simultaneous determination of purine bases, ribonucleosides and ribonucleotides by capillary electrophoresis-electrochemistry with a copper electrode. J Chromatogr A 760(2):227–233CrossRefGoogle Scholar
  7. 7.
    Huang Y, Chang H (2007) Analysis of adenosine triphosphate and glutathione through gold nanoparticles assisted laser desorption/ionization mass spectrometry. Anal Chem 79(13):4852–4859CrossRefGoogle Scholar
  8. 8.
    Rezaei B, Khosropour H, Ensafi A, Dinari M, Nabiyan A (2015) A new electrochemical sensor for the simultaneous determination of guanine and adenine: using a NiAl-layered double hydroxide/graphene oxide-multi wall carbon nanotube modified glassy carbon electrode. RSC Adv 5(92):75756–75765CrossRefGoogle Scholar
  9. 9.
    Li C, Qiu X, Ling Y (2013) Electrocatalytic oxidation and the simultaneous determination of guanine and adenine on (2,6-pyridinedicarboxylic acid)/graphene composite film modified electrode. J Electroanal Chem 704(6):44–49CrossRefGoogle Scholar
  10. 10.
    Xu J, Li T, Shen S, Zhao L, Ma C, Mahmoud AE, Wang J (2015) Electrochemically reduced carboxyl graphene modified electrode for simultaneous determination of guanine and adenine. Anal Lett 48(9):1465–1480CrossRefGoogle Scholar
  11. 11.
    Ensafi A, Jafari-Asl M, Rezaei B, Allafchian A (2013) Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry. Sensors Actuators B Chem 177(1):634–642CrossRefGoogle Scholar
  12. 12.
    Wang H, Li S, Si Y, Zhang N, Sun Z, Wu H, Lin Y (2014) Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale 6(14):8107–8116CrossRefGoogle Scholar
  13. 13.
    Dong M, Liu C, Li S, Li R, Qiao Y, Zhang L, Wei W, Qi W, Wang H (2016) Polymerizing dopamine onto Q-graphene scaffolds towards the fluorescent nanocomposites with high aqueous stability and enhanced fluorescence for the fluorescence analysis and imaging of copper ions. Sensors Actuators B Chem 232:234–242CrossRefGoogle Scholar
  14. 14.
    Cai Y, Feng L, Hua Y, Liu H, Yin M, Lv X, Li S, Wang H (2018) Q-graphene-loaded metal organic framework nanocomposites with water-triggered fluorescence turn-on: fluorimetric test strips for directly sensing trace water in organic solvents. Chem Commun 54(96):13595–13598CrossRefGoogle Scholar
  15. 15.
    Hua Y, Li S, Cai Y, Liu H, Wan Y, Yin M, Wang F, Wang H (2019) A sensitive and selective electroanalysis strategy for histidine using the wettable well electrodes modified with graphene quantum dot-scaffolded melamine and copper nanocomposites. Nanoscale 11(5):2126–2130CrossRefGoogle Scholar
  16. 16.
    Luan F, Zhang S, Chen D, Zheng K, Zhuang X (2018) CoS2-decorated ionic liquid-functionalized graphene as a novel hydrazine electrochemical sensor. Talanta 182:529–535CrossRefGoogle Scholar
  17. 17.
    Yang H, Shan C, Li F, Han D, Zhang Q, Niu L (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 45(26):3880–3882CrossRefGoogle Scholar
  18. 18.
    Shan C, Yang H, Han D, Zhang Q (2010) Electrochemical determination of NADH and ethanol based on ionic liquid-functionalized graphene. Biosens Bioelectron 25(6):1504–1508CrossRefGoogle Scholar
  19. 19.
    Yang W, Gao Z, Wang J, Wang B, Liu Q, Li Z, Mann T, Yang P, Zhang M, Liu L (2012) Synthesis of reduced graphene nanosheet/urchin-like manganese dioxide composite and high performance as supercapacitor electrode. Electrochim Acta 69(5):112–119CrossRefGoogle Scholar
  20. 20.
    Wang X, Luo C, Li L, Duan H (2015) Highly selective and sensitive electrochemical sensor for L-cysteine detection based on graphene oxide/multiwalled carbon nanotube/manganese dioxide/gold nanoparticles composite. J Electroanal Chem 757:100–106CrossRefGoogle Scholar
  21. 21.
    Xu H, Zhang W (2017) Graphene oxide-MnO2 nanocomposite-modified glassy carbon electrode as an efficient sensor for H2O2. Chin Chem Lett 28(1):143–148CrossRefGoogle Scholar
  22. 22.
    Indrani B, Pangule R, Kane R (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23(6):690–718CrossRefGoogle Scholar
  23. 23.
    Li Y, Su Y, Zhao X, He X, Zhang R, Zhao J, Fan X, Jiang Z (2014) Antifouling, high-flux nanofiltration membranes enabled by dual functional polydopamine. ACS Appl Mater Interfaces 6(8):5548–5557CrossRefGoogle Scholar
  24. 24.
    Li R, Liu X, Qiu W, Zhang M (2016) In vivo monitoring of H2O2 with polydopamine and prussian blue-coated microelectrode. Anal Chem 88(15):7769–7776CrossRefGoogle Scholar
  25. 25.
    Hu Y, Hua S, Li F, Jiang Y, Bai X, Li D, Niu L (2011) Green-synthesized gold nanoparticles decorated graphene sheets for label-free electrochemical impedance DNA hybridization biosensing. Biosens Bioelectron 26(11):4355–4361CrossRefGoogle Scholar
  26. 26.
    Zhai W, Wang C, Yu P, Wang Y, Mao L (2014) Single-layer MnO2 nanosheets suppressed fluorescence of 7-Hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem 86(24):12206–12213CrossRefGoogle Scholar
  27. 27.
    Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide--MnO2 nanocomposites for supercapacitors. ACS Nano 4(5):2822–2830CrossRefGoogle Scholar
  28. 28.
    Gao T, Glerup M, Krumeich F, Nesper R, Fjellvåg H, Norby P (2008) Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J Phys Chem C 112(34):13134–13140CrossRefGoogle Scholar
  29. 29.
    Guo H, Wang X, Qian Q, Wang F, Xia X (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653–2659CrossRefGoogle Scholar
  30. 30.
    Li Y, Liu M, Xiang C, Xie Q, Yao S (2006) Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films 497(1–2):270–278CrossRefGoogle Scholar
  31. 31.
    Yang Z, Zheng X, Zheng J (2017) Facile synthesis of three-dimensional porous Au@Pt core-shell nanoflowers supported on graphene oxide for highly sensitive and selective detection of hydrazine. Chem Eng J 327:431–440CrossRefGoogle Scholar
  32. 32.
    Wang S, Xu Q (2007) Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes. Bioelectrochemistry 70(2):296–300CrossRefGoogle Scholar
  33. 33.
    Wang D, Huang B, Liu J, Guo X, Abudukeyoumu G, Zhang Y, Ye B, Li Y (2017) A novel electrochemical sensor based on Cu@Ni/MWCNTs nanocomposite for simultaneous determination of guanine and adenine. Biosens Bioelectron 102:389–395CrossRefGoogle Scholar
  34. 34.
    He S, He P, Zhang X (2018) Simultaneous voltammetric determination of guanine and adenine by using a glassy carbon electrode modified with a composite consisting of carbon quantum dots and overoxidized poly(2-aminopyridine). Microchim Acta 185(2):107CrossRefGoogle Scholar
  35. 35.
    Habibi B, Jahanbakhshi M (2016) A glassy carbon electrode modified with carboxylated diamond nanoparticles for differential pulse voltammetric simultaneous determination of guanine and adenine. Microchim Acta 183(7):2317–2325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringYantai UniversityYantaiChina
  2. 2.CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina

Personalised recommendations