Advertisement

Microchimica Acta

, 186:484 | Cite as

An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles

  • Parnaz Assari
  • Amir Abbas RafatiEmail author
  • Azizallah Feizollahi
  • Roghayeh Asadpour Joghani
Original Paper
  • 125 Downloads

Abstract

The authors describe an immunosensor for the prostate specific antigen (PSA). It was obtained by modifying a glassy carbon electrode (GCE) first modified with gold nanoparticles and then with reduced graphene oxide that was decorated with gold nanoparticles. The AuNPs on reduced graphene oxide provide a suitable surface for attachment of antibodies. On binding of the antigen, the square wave voltammetric signal (measured by using hexacyanoferrate as a probe) reduced. This method has two logarithmically linear analytical ranges that extend from 25 to 55 fg.mL−1 and from 1 to 36 ng.mL−1, respectively. The lowest detection limit is 2 pg.mL−1. Electrochemical impedance spectroscopy was also carried out for PSA determination. EIS works in the 0.0018 to 41 ng.mL−1 concentration range and has an LOD of 60 pg.mL−1. This method was applied to the determination of PSA in (spiked) human serum samples. In order to survey the selectivity of immunosensor, determination of PSA was performed in human serum samples, and finally sensitivity and reproducibility were examined.

Graphical abstract

Facile label free immunosensor based on reduced graphene oxide decorated with gold nanoparticles for early diagnosis prostate cancer via ultrasensitive detection of PSA biomarker: application in human serum.

Keywords

Prostate specific antigen Electrochemistry Immunoassay SWV EIS Reduced graphene oxide Gold nanoparticles 

Notes

Acknowledgements

The authors greatly acknowledge Bu-Ali Sina University for the financial support from the Grant Research Council.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Bok RA, Small EJ (2002) Bloodborne biomolecular markers in prostate cancer development and progression. Nat Rev Cancer 2(12):918CrossRefGoogle Scholar
  2. 2.
    Powers JL, Rippe KD, Imarhia K, Swift A, Scholten M, Islam N (2012) A direct, competitive enzyme-linked immunosorbent assay (ELISA) as a quantitative technique for small molecules. J Chem Educ 89(12):1587–1590CrossRefGoogle Scholar
  3. 3.
    Sonawane MD, Nimse SB, Song K-S, Kim T (2016) Detection, quantification, and profiling of PSA: current microarray technologies and future directions. RSC Adv 6(9):7599–7609CrossRefGoogle Scholar
  4. 4.
    Tardivo M, Toffoli V, Fracasso G, Borin D, Dal Zilio S, Colusso A, Carrato S, Scoles G, Meneghetti M, Colombatti M (2015) Parallel optical read-out of micromechanical pillars applied to prostate specific membrane antigen detection. Biosens Bioelectron 72:393–399CrossRefGoogle Scholar
  5. 5.
    Deng L, Chen H-Y, Xu J-J (2015) A novel electrochemiluminescence resonance energy transfer system for ultrasensitive detection of prostate-specific antigen. Electrochem Commun 59:56–59CrossRefGoogle Scholar
  6. 6.
    He Z, Gao N, Jin W (2003) Determination of tumor marker CA125 by capillary electrophoretic enzyme immunoassay with electrochemical detection. Anal Chim Acta 497(1–2):75–81CrossRefGoogle Scholar
  7. 7.
    Chuah K, Lai LM, Goon IY, Parker SG, Amal R, Gooding JJ (2012) Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as ‘dispersible electrodes’. Chem Commun 48(29):3503–3505CrossRefGoogle Scholar
  8. 8.
    Damborska D, Bertok T, Dosekova E, Holazova A, Lorencova L, Kasak P, Tkac J (2017) Nanomaterial-based biosensors for detection of prostate specific antigen. Microchim Acta 184(9):3049–3067CrossRefGoogle Scholar
  9. 9.
    Fan H, Guo Z, Gao L, Zhang Y, Fan D, Ji G, Du B, Wei Q (2015) Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline–Au asymmetric multicomponent nanoparticles. Biosens Bioelectron 64:51–56CrossRefGoogle Scholar
  10. 10.
    Xu Z, Chen X, Dong S (2006) Electrochemical biosensors based on advanced bioimmobilization matrices. TrAC Trends Anal Chem 25(9):899–908CrossRefGoogle Scholar
  11. 11.
    Choudhary M, Kumar V, Singh A, Singh M, Kaur S, Reddy G, Pasricha R, Singh S, Arora K (2013) Graphene oxide based label free ultrasensitive immunosensor for lung cancer biomarker, hTERT. Journal of Biosensors & Bioelectronics 4(4):1–9CrossRefGoogle Scholar
  12. 12.
    Chu Y, Wang H, Ma H, Wu D, Du B, Wei Q (2016) Sandwich-type electrochemical immunosensor for ultrasensitive detection of prostate-specific antigen using palladium-doped cuprous oxide nanoparticles. RSC Adv 6(88):84698–84704CrossRefGoogle Scholar
  13. 13.
    Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181(15–16):1999–2008CrossRefGoogle Scholar
  14. 14.
    Shoja Y, Rafati AA, Ghodsi J (2017) Enzymatic biosensor based on entrapment of D-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: analytical applications for D-alanine in human serum. Enzym Microb Technol 100:20–27CrossRefGoogle Scholar
  15. 15.
    Afraz A, Rafati AA, Najafi M (2014) Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng C 44:58–68CrossRefGoogle Scholar
  16. 16.
    Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482CrossRefGoogle Scholar
  17. 17.
    Ma X, Qu Q, Zhao Y, Luo Z, Zhao Y, Ng KW, Zhao Y (2013) Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. J Mater Chem B 1(47):6495–6500CrossRefGoogle Scholar
  18. 18.
    Turcheniuk K, Boukherroub R, Szunerits S (2015) Gold–graphene nanocomposites for sensing and biomedical applications. J Mater Chem B 3(21):4301–4324CrossRefGoogle Scholar
  19. 19.
    Guex LG, Sacchi B, Peuvot KF, Andersson RL, Pourrahimi AM, Ström V, Farris S, Olsson RT (2017) Experimental review: chemical reduction of graphene oxide (GO) to reduced graphene oxide (rGO) by aqueous chemistry. Nanoscale 9(27):9562–9571CrossRefGoogle Scholar
  20. 20.
    Chng ELK, Pumera M (2013) The toxicity of graphene oxides: dependence on the oxidative methods used. Chem Eur J 19(25):8227–8235CrossRefGoogle Scholar
  21. 21.
    Hussain N, Gogoi A, Sarma RK, Sharma P, Barras A, Boukherroub R, Saikia R, Sengupta P, Das MR (2014) Reduced graphene oxide nanosheets decorated with au nanoparticles as an effective bactericide: investigation of biocompatibility and leakage of sugars and proteins. ChemPlusChem 79(12):1774–1784Google Scholar
  22. 22.
    Kim Y-K, Kim M-H, Min D-H (2011) Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 47(11):3195–3197CrossRefGoogle Scholar
  23. 23.
    Wu L, Chu H, Koh W, Li E (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400CrossRefGoogle Scholar
  24. 24.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  25. 25.
    Kim YJ, Kim JW, Lee JE, Ryu JH, Kim J, Chang IS, Suh KD (2004) Synthesis and adsorption properties of gold nanoparticles within pores of surface-functional porous polymer microspheres. J Polym Sci A Polym Chem 42(22):5627–5635CrossRefGoogle Scholar
  26. 26.
    javad Assari M, Rezaee A, Rangkooy H (2015) Bone char surface modification by nano-gold coating for elemental mercury vapor removal. Appl Surf Sci 342:106–111CrossRefGoogle Scholar
  27. 27.
    Shao Y, Wang J, Engelhard M, Wang C, Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20(4):743–748CrossRefGoogle Scholar
  28. 28.
    Xiong Z, Zhang LL, Ma J, Zhao X (2010) Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem Commun 46(33):6099–6101CrossRefGoogle Scholar
  29. 29.
    Zhang G, Liu Z, Fan L, Guo Y (2018) Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Microchim Acta 185(3):159CrossRefGoogle Scholar
  30. 30.
    Zhao J, Guo Z, Feng D, Guo J, Wang J, Zhang Y (2015) Simultaneous electrochemical immunosensing of alpha-fetoprotein and prostate specific antigen using a glassy carbon electrode modified with gold nanoparticle-coated silica nanospheres and decorated with azure a or ferrocenecarboxylic acid. Microchim Acta 182(15–16):2435–2442CrossRefGoogle Scholar
  31. 31.
    Çevik E, Bahar Ö, Şenel M, Abasıyanık MF (2016) Construction of novel electrochemical immunosensor for detection of prostate specific antigen using ferrocene-PAMAM dendrimers. Biosens Bioelectron 86:1074–1079CrossRefGoogle Scholar
  32. 32.
    Oliveira N, Costa-Rama E, Viswanathan S, Delerue-Matos C, Pereira L, Morais S (2018) Label-free Voltammetric Immunosensor for prostate specific antigen detection. Electroanalysis 30(11):2604–2611.  https://doi.org/10.1002/elan.201800417 CrossRefGoogle Scholar
  33. 33.
    Wang H, Zhang Y, Yu H, Wu D, Ma H, Li H, Du B, Wei Q (2013) Label-free electrochemical immunosensor for prostate-specific antigen based on silver hybridized mesoporous silica nanoparticles. Anal Biochem 434(1):123–127CrossRefGoogle Scholar
  34. 34.
    Li L, Xu J, Zheng X, Ma C, Song X, Ge S, Yu J, Yan M (2014) Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Biosens Bioelectron 61:76–82CrossRefGoogle Scholar
  35. 35.
    Akter R, Rahman MA, Rhee CK (2012) Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal Chem 84(15):6407–6415CrossRefGoogle Scholar
  36. 36.
    Ertürk G, Hedström M, Tümer MA, Denizli A, Mattiasson B (2015) Real-time prostate-specific antigen detection with prostate-specific antigen imprinted capacitive biosensors. Anal Chim Acta 891:120–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Parnaz Assari
    • 1
  • Amir Abbas Rafati
    • 1
    Email author
  • Azizallah Feizollahi
    • 1
  • Roghayeh Asadpour Joghani
    • 1
  1. 1.Department of Physical Chemistry, Faculty of ChemistryBu-Ali Sina UniversityHamedanIran

Personalised recommendations