Microchimica Acta

, 186:445 | Cite as

Electrochemical sensing of L-ascorbic acid by using a glassy carbon electrode modified with a molybdophosphate film

  • Shuping Liu
  • Xingxing Jiang
  • Minghui YangEmail author
Original Paper


Electrochemical sensing of L-ascorbic acid (AA) is reported based on the use of a redox-active molybdophosphate film on a glassy carbon electrode (GCE). Molybdophosphate is formed by reacting hydroxyapatite nanoparticles with sodium molybdate. The modified GCE can be utilized for detection of AA, typically at a working potential of 0.4 V (vs. Ag/AgCl). The GCE has a decreased overpotential and enhanced sensitivity (219 μA·mM−1·cm−2). Response is linear in the 1 μM to 1.5 mM AA concentration range, and the limit of detection is 4 nM. The selectivity of this sensor makes it a useful tool for accurate determination of AA in practical samples as shown for a vitamin C tablet and for spiked beverages.

Graphical abstract

An electrochemical sensing platform is reported that is based on the use of a redox-active molybdophosphate film that was formed via reacting hydroxyapatite nanoparticles (HAP-NPs) with sodium molybdate. Graphical abstract contains poor quality of text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have uploaded the graphical abstract as PDF format


Hydroxyapatite nanoparticles L-Ascorbic acid Molybdate Molybdophosphate film 



The authors thank the support of this work by the National Natural Science Foundation of China (No. 21575165).

Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Gallarate M, Carlotti ME, Trotta M, Bovo S (1999) On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm 188(2):233–241CrossRefGoogle Scholar
  2. 2.
    Pisoschi AM, Pop A, Serban AI, Fafaneata C (2014) Electrochemical methods for ascorbic acid determination. Electrochim Acta 121:443–460CrossRefGoogle Scholar
  3. 3.
    Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochimica Et Biophysica Acta-General Subj 1569(1–3):1–9Google Scholar
  4. 4.
    Kalimuthu P, John SA (2009) Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Bioelectrochemistry 77(1):13–18CrossRefGoogle Scholar
  5. 5.
    Massey LK, Liebman M, Kynast-Gales SA (2005) Ascorbate increases human oxaluria and kidney stone risk. J Nutr 135(7):1673–1677CrossRefGoogle Scholar
  6. 6.
    Padayatty SJ, Katz A, Wang YH, Eck P, Kwon O, Lee JH, Chen SL, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22(1):18–35CrossRefGoogle Scholar
  7. 7.
    Zuo X, Zhang H, Li N (2012) An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode. Sensor Actuat B-Chem 161(1):1074–1079CrossRefGoogle Scholar
  8. 8.
    Suntornsuk L, Gritsanapun W, Nilkamhank S, Paochom A (2002) Quantitation of vitamin C content in herbal juice using direct titration. J Pharm Biomed Anal 28(5):849–855CrossRefGoogle Scholar
  9. 9.
    Dai H, Wu XP, Wang YM, Zhou WC, Chen GN (2008) An electrochemiluminescent biosensor for vitamin C based on inhibition of luminol electrochemiluminescence on graphite/poly(methyl methacrylate) composite electrode. Electrochim Acta 53(16):5113–5117CrossRefGoogle Scholar
  10. 10.
    Tai A, Gohda E (2007) Determination of ascorbic acid and its related compounds in foods and beverages by hydrophilic interaction liquid chromatography. J Chromatogr B-Anal Technol Biomed Life Sci 853(1–2):214–220CrossRefGoogle Scholar
  11. 11.
    Wu X, Diao YX, Sun CX, Yang JH, Wang YB, Sun SN (2003) Fluorimetric determination of ascorbic acid with o-phenylenediamine. Talanta 59(1):95–99CrossRefGoogle Scholar
  12. 12.
    Kumar SA, Lo PH, Chen SM (2008) Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosens Bioelectron 24(4):518–523CrossRefGoogle Scholar
  13. 13.
    Wen D, Guo SJ, Dong SJ, Wang EK (2010) Ultrathin Pd nanowire as a highly active electrode material for sensitive and selective detection of ascorbic acid. Biosens Bioelectron 26(3):1056–1061CrossRefGoogle Scholar
  14. 14.
    Khan A, Khan MI, Iqbal Z, Shah Y, Ahmad L, Nazir S, Watson DG, Khan JA, Nasir F, Khan A, Ismail (2011) A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta 84(3):789–801CrossRefGoogle Scholar
  15. 15.
    Weng X, Cao Q, Liang L, Chen J, You C, Ruan Y, Lin H, Wu L (2013) Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. Talanta 117:359–365CrossRefGoogle Scholar
  16. 16.
    Sha YF, Qian L, Ma Y, Bai HX, Yang XR (2006) Multilayer films of carbon nanotubes and redox polymer on screen-printed carbon electrodes for electrocatalysis of ascorbic acid. Talanta 70(3):556–560CrossRefGoogle Scholar
  17. 17.
    Thangamuthu R, Senthil Kumar SM, Chandrasekara Pillai K (2007) Direct amperometric determination of l-ascorbic acid (vitamin C) at octacyanomolybdate-doped-poly(4-vinylpyridine) modified electrode in fruit juice and pharmaceuticals. Sensors Actuators B Chem 120(2):745–753CrossRefGoogle Scholar
  18. 18.
    Zhang X, Cao Y, Yu S, Yang F, Xi P (2013) An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. Biosens Bioelectron 44:183–190CrossRefGoogle Scholar
  19. 19.
    Xi L, Ren D, Luo J, Zhu Y (2010) Electrochemical analysis of ascorbic acid using copper nanoparticles/polyaniline modified glassy carbon electrode. J Electroanal Chem 650(1):127–134CrossRefGoogle Scholar
  20. 20.
    Li Y, Li X, Wang D, Shen C, Yang M (2018) Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores. Microchim Acta 185(9):435CrossRefGoogle Scholar
  21. 21.
    Li Y, Shen C, Li X, Yang M, Shao C (2018) Hydroxyapatite nanoparticle based fluorometric determination and imaging of cysteine and homocysteine in living cells. Microchim Acta 185(5):271CrossRefGoogle Scholar
  22. 22.
    Zhang K, Zeng K, Shen C, Tian S, Yang M (2018) Determination of protein kinase A activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. Microchim Acta 185(4):225CrossRefGoogle Scholar
  23. 23.
    Xiang W, Wang G, Cao S, Wang Q, Xiao X, Li T, Yang M (2018) Coupling antibody based recognition with DNA based signal amplification using an electrochemical probe modified with MnO2 nanosheets and gold nanoclusters: application to the sensitive voltammetric determination of the cancer biomarker alpha fetoprotein. Microchim Acta 185(7):335CrossRefGoogle Scholar
  24. 24.
    Cao S, Wang Q, Xiao X, Li T, Yang M (2019) Electrochemical immunoassay for the tumor marker CD25 by coupling magnetic sphere-based enrichment and DNA based signal amplification. Microchim Acta 186: 352Google Scholar
  25. 25.
    Shen C, Liu S, Li X, Zhao D, Yang M (2018) Immunoelectrochemical detection of thehuman epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification. Microchim Acta 185(12):547CrossRefGoogle Scholar
  26. 26.
    Singh RK, Kim T-H, Patel KD, Kim J-J, Kim H-W (2014) Development of biocompatible apatite nanorod-based drug-delivery system with in situ fluorescence imaging capacity. J Mater Chem B 2(14):2039CrossRefGoogle Scholar
  27. 27.
    Chai Y, Li X, Yang M (2019) Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO2nanosheets as the electrochemical probe. Microchim Acta 186:316CrossRefGoogle Scholar
  28. 28.
    Wang G, Wang H, Cao S, Xiang W, Li T, Yang M (2019) Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate. Microchim Acta 186(2):96CrossRefGoogle Scholar
  29. 29.
    Zhang H, Huang F, Xu S, Xia Y, Huang W, Li Z (2013) Fabrication of nanoflower-like dendritic Au and polyaniline composite nanosheets at gas/liquid interface for electrocatalytic oxidation and sensing of ascorbic acid. Electrochem Commun 30:46–50CrossRefGoogle Scholar
  30. 30.
    Weng C-J, Hsu P-H, Hsu S-C, Chang C-H, Hung W-I, Wu P-S, Yeh J-M (2013) Synthesis of electroactive mesoporous gold–organosilica nanocomposite materials via a sol–gel process with non-surfactant templates and the electroanalysis of ascorbic acid. J Mater Chem B 1(38):4983CrossRefGoogle Scholar
  31. 31.
    Fernandes DM, Costa M, Pereira C, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Freire C (2014) Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. J Colloid Interface Sci 432:207–213CrossRefGoogle Scholar
  32. 32.
    Gopalakrishnan A, Sha R, Vishnu N, Kumar R, Badhulika S (2018) Disposable, efficient and highly selective electrochemical sensor based on cadmium oxide nanoparticles decorated screen-printed carbon electrode for ascorbic acid determination in fruit juices. Nano-Struct Nano-Objects 16:96–103CrossRefGoogle Scholar
  33. 33.
    Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2014) Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 53:220–224CrossRefGoogle Scholar
  34. 34.
    Jin L, Zhang Z, Zhuang Z, Meng Z, Li C, Shen Y (2016) PdPt bimetallic alloy nanowires-based electrochemical sensor for sensitive detection of ascorbic acid. RSC Adv 6(48):42008–42013CrossRefGoogle Scholar
  35. 35.
    Abdelwahab AA, Kim D-M, Halappa NM, Shim Y-B (2013) A selective catalytic oxidation of ascorbic acid at the Aminopyrimidyl functionalized-conductive polymer electrode. Electroanalysis 25(5):1178–1184CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations