Advertisement

Microchimica Acta

, 186:444 | Cite as

Thioglycolic acid-capped ZnSe quantum dots as nanoprobe for cobalt(II) and iron(III) via measurement of grey level, UV-vis spectra and dynamic light scattering

  • Xinxin Xing
  • Yue Yang
  • Tong Zou
  • Zhezhe Wang
  • Zidong Wang
  • Rongjun Zhao
  • Xu Zhang
  • Yude WangEmail author
Original Paper

Abstract

Thioglycolic acid-functionalized ZnSe quantum dots (QDs) as a colorimetric nanoprobe were prepared and applied to the determination of cobalt(II) and iron(III). Test strips were obtained by a dipping-drying process. On exposure to Co(II), they undergo a color change from white to brown, and on exposure to Fe(III) from white to pink. The limits of detection (LOD) are 2.6 mg L−1 for Co(II) and 2.2 mg L−1 for Fe(III). Test strips introduce a low-cost, portable, rapid and convenient tool for determination of Co(II) and Fe(III). In addition, two other analytical methods have been studied for detection of Co(II) and Fe(III) at low concentration. The first is UV-vis spectrometry which has a LOD as low as 0.14 mg L−1 for Co(II) (at 412 nm) and 0.12 mg L−1 for Fe(III) (at 400 nm). The second is dynamic light scattering (DLS) with a LOD of 3.0 μg L−1 for Co(II) and 2.5 μg L−1 for Fe(III).

Graphical abstract

Thioglycolic acid-functionalized ZnSe quantum dots (TGA-ZnSe QDs) show high sensitivity and low detection limits for Co2+ and Fe3+.

Keywords

TGA-ZnSe QDs Test strip Dipping-drying method Colorimetric determination Grey level On-site examination Color reaction Aggregation of QDs Metal-ligand interaction 

Notes

Acknowledgements

This work was supported by Yunnan University’s Research Innovation Fund for Graduate Students (YDY17106) and National Natural Science Foundation of China (Grant No.61761047 and No. 41876055).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3561_MOESM1_ESM.doc (5.1 mb)
ESM 1 (DOC 5.09 mb)

References

  1. 1.
    Gore AH, Gunjal DB, Kokate MR, Sudarsan V, Anbhule PV, Patil SR, Kolekar GB (2012) Highly selective and sensitive recognition of cobalt (II) ions directly in aqueous solution using carboxyl-functionalized CdS QDs as a naked eye colorimetric probe: applications to environmental analysis. ACS Appl Mater Interfaces 4:5217–5226CrossRefGoogle Scholar
  2. 2.
    Wang GX, Chen Y, Konstantinov K et al (2002) Nanosize cobalt oxides as anode materials for lithium-ion batteries. J Alloys Compd 340:5–10CrossRefGoogle Scholar
  3. 3.
    Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K (2006) Cobalt-base high-temperature alloys. Science 312:90–91CrossRefGoogle Scholar
  4. 4.
    Paulsen JA, Ring AP, Lo CCH, Snyder JE, Jiles DC (2005) Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications. J Appl Phys 97:044502CrossRefGoogle Scholar
  5. 5.
    Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41:1462–1484CrossRefGoogle Scholar
  6. 6.
    Meseguer S, Tena MA, Gargori C, Badenes JA, Llusar M, Monrós G (2007) Structure and colour of cobalt ceramic pigments from phosphates. Ceram Int 33:843–849CrossRefGoogle Scholar
  7. 7.
    Okamoto S, Eltis LD (2011) The biological occurrence and trafficking of cobalt. Metallomics 3:963–970CrossRefGoogle Scholar
  8. 8.
    Maity D, Raj A, Karthigeyan D (2013) Reaction-based probes for co(II) and cu(I) with dual output modes: fluorescence live cell imaging. RSC Adv 3:16788CrossRefGoogle Scholar
  9. 9.
    Li CY, Zhang XB, Jin Z (2006) A fluorescent chemosensor for cobalt ions based on a multi-substituted phenol-ruthenium(II) tris(bipyridine) complex. Anal Chim Acta 580:143–148CrossRefGoogle Scholar
  10. 10.
    Liu Z, Wang W, Xu H (2015) A “naked eye” and ratiometric chemosensor for cobalt(II) based on coumarin platform in aqueous solution. Inorg Chem Commun 62:19–23CrossRefGoogle Scholar
  11. 11.
    Lee SY, Kim SY, Kim JA (2016) A dual chemosensor: colorimetric detection of Co2+ and fluorometric detection of Zn2+. J Lumin 179:602–609CrossRefGoogle Scholar
  12. 12.
    Ryu KY, Lee SY, Park DY, Kim SY, Kim C (2017) A novel colorimetric chemosensor for detection of Co2+ and S2− in an aqueous environment. Sensors Actuators B Chem 242:792–800CrossRefGoogle Scholar
  13. 13.
    Chen C, Zhang X, Gao P, Hu M (2018) A water stable europium coordination polymer as fluorescent sensor for detecting Fe3+, CrO4 2−, and Cr2O7 2− ions. J Solid State Chem 258:86–92CrossRefGoogle Scholar
  14. 14.
    Zhou M, Guo J, Yang C (2018) Ratiometric fluorescence sensor for Fe3+ ions detection based on quantum dot-doped hydrogel optical fiber. Sensors Actuators B Chem 264:52–58CrossRefGoogle Scholar
  15. 15.
    Chen X, Zhao Q, Zou W, Qu Q, Wang F (2017) A colorimetric Fe3+ sensor based on an anionic poly(3,4-propylenedioxythiophene) derivative. Sensors Actuators B Chem 244:891–896CrossRefGoogle Scholar
  16. 16.
    Gupta VK, Mergu N, Kumawat LK (2016) A new multifunctional rhodamine-derived probe for colorimetric sensing of cu(II) and Al(III) and fluorometric sensing of Fe(III) in aqueous media. Sensors Actuators B Chem 223:101–113CrossRefGoogle Scholar
  17. 17.
    Wei TB, Cheng XB, Li H, Zheng F, Lin Q, Yao H, Zhang YM (2016) Novel functionalized pillar[5]arene: synthesis, assembly and application in sequential fluorescent sensing for Fe3+ and F in aqueous media. RSC Adv 6:20987–20993CrossRefGoogle Scholar
  18. 18.
    Soylak M, Aydin A (2011) Determination of some heavy metals in food and environmental samples by flame atomic absorption spectrometry after coprecipitation. Food Chem Toxicol 49:1242–1248CrossRefGoogle Scholar
  19. 19.
    Chamsaz M, Eftekhari M, Tafreshi S, Yekkebashi A, Eftekhari A (2014) Speciation and determination of iron using dispersive liquid–liquid microextraction based on solidification of organic drop followed by flame atomic absorption spectrometry. Int J Environ Anal Chem 94:348–355CrossRefGoogle Scholar
  20. 20.
    Rao KS, Balaji T, Rao TP et al (2002) Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma-atomic emission spectrometry. Spectrochim Acta B 57:1333–1338CrossRefGoogle Scholar
  21. 21.
    Fukuda M, Hayashibe Y, Sayama Y (1995) Determination of nickel, cobalt, copper, thorium and uranium in high-purity zinc metal by ICP-MS with on-line matrix separation. Anal Sci 11:13–16CrossRefGoogle Scholar
  22. 22.
    Sakamoto-arnold CM, Johnson KS (1987) Determination of picomolar levels of cobalt in seawater by flow injection analysis with chemiluminescence detection. Anal Chem 59:1789–1794CrossRefGoogle Scholar
  23. 23.
    Maity D, Govindaraju T (2011) Highly selective colorimetric chemosensor for Co2+. Inorg Chem 50:11282–11284CrossRefGoogle Scholar
  24. 24.
    Liu X, Yang Y, Li Q, Wang Z, Xing X, Wang Y (2018) Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level. Sensors Actuators B Chem 260:1068–1075CrossRefGoogle Scholar
  25. 25.
    Kao MH, Wan CF, Wu AT (2017) A selective colorimetric chemosensor for Fe3+. Luminescence 32:1561–1566CrossRefGoogle Scholar
  26. 26.
    Park GJ, Na YJ, Jo HY, Lee SA, Kim C (2014) A colorimetric organic chemo-sensor for Co2+ in a fully aqueous environment. Dalton T 43:6618–6622CrossRefGoogle Scholar
  27. 27.
    Liu H, Zhao H, Tong Z (2017) A colorimetric, ratiometric, and fluorescent cobalt(II) chemosensor based on mixed organic ligands. Sensors Actuators B Chem 239:511–514CrossRefGoogle Scholar
  28. 28.
    Na YJ, Choi YW, You GR, Kim C (2016) A novel selective colorimetric chemosensor for cobalt ions in a near perfect aqueous solution. Sensors Actuators B Chem 223:234–240CrossRefGoogle Scholar
  29. 29.
    Singhal D, Singh AK, Upadhyay A (2014) Highly selective potentiometric and colorimetric determinations of cobalt (II) ion using thiazole based ligands. Mater Sci Eng C 45:216–224CrossRefGoogle Scholar
  30. 30.
    Wang X, Zheng W, Lin H (2010) A new fluorescent chemosensor detecting Co2+ and K+ in DMF buffered solution. J Fluoresc 20:557–561CrossRefGoogle Scholar
  31. 31.
    Wang X, Zheng W, Lin H, Liu G, Chen Y, Fang J (2009) A new selective phenanthroline-based fluorescent chemosensor for Co2+. Tetrahedron Lett 50:1536–1538CrossRefGoogle Scholar
  32. 32.
    Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167CrossRefGoogle Scholar
  33. 33.
    Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782CrossRefGoogle Scholar
  34. 34.
    Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J, Nichtl A, Kürzinger K (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3:935–938CrossRefGoogle Scholar
  35. 35.
    Du BA, Li ZP, Liu CH (2006) One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew Chem 118:8190–8193CrossRefGoogle Scholar
  36. 36.
    Ipe BI, Shukla A, Lu H, Zou B, Rehage H, Niemeyer CM (2006) Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. ChemPhysChem 7:1112–1118CrossRefGoogle Scholar
  37. 37.
    Deng DW, Yu JS, Pan Y (2006) Water-soluble CdSe and CdSe/CdS nanocrystals: a greener synthetic route. J Colloid Interface Sci 299:225–232CrossRefGoogle Scholar
  38. 38.
    Shu C, Huang B, Chen X, Wang Y, Li X, Ding L, Zhong W (2013) Facile synthesis and characterization of water soluble ZnSe/ZnS quantum dots for cellar imaging. Spectrochim Acta A 104:143–149CrossRefGoogle Scholar
  39. 39.
    Ding Y, Sun H, Liu D, Liu F, Wang D, Jiang Q (2013) Water-soluble, high-quality ZnSe@ZnS core/shell structure nanocrystals. J Chinese Adv Mater Soc 1:56–64CrossRefGoogle Scholar
  40. 40.
    Mahapatra N, Panja S, Mandal A, Halder M (2014) A single source-precursor route for the one-pot synthesis of highly luminescent CdS quantum dots as ultra-sensitive and selective photoluminescence sensor for Co2+ and Ni2+ ions. J Mater Chem C 2:7373CrossRefGoogle Scholar
  41. 41.
    Mahapatra N, Panja S, Mandal A et al (2017) A study of structural, morphological and optical properties of nanostructured ZnSe/ZnS multilayer thin films. J Alloys Compd 726:707–711CrossRefGoogle Scholar
  42. 42.
    Vikraman AE, Jose AR, Jacob M et al (2015) Thioglycolic acid capped CdS quantum dots as a fluorescent probe for the nanomolar determination of dopamine. Anal Methods 7:6791–6798CrossRefGoogle Scholar
  43. 43.
    Xie R, Li L, Li Y, Liu L, Xiao D, Zhu J (2011) Fe:ZnSe semiconductor nanocrystals: synthesis, surface capping, and optical properties. J Alloys Compd 509:3314–3318CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xinxin Xing
    • 1
  • Yue Yang
    • 2
  • Tong Zou
    • 1
  • Zhezhe Wang
    • 2
  • Zidong Wang
    • 1
  • Rongjun Zhao
    • 1
  • Xu Zhang
    • 1
  • Yude Wang
    • 1
    • 3
    Email author
  1. 1.School of Materials Science and EngineeringYunnan UniversityKunmingPeople’s Republic of China
  2. 2.Department of PhysicsYunnan UniversityKunmingPeople’s Republic of China
  3. 3.Key Lab of Quantum Information of Yunnan ProvinceYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations