Advertisement

Microchimica Acta

, 186:443 | Cite as

Preparation of DNA-functionalized surfaces for simultaneous homeotropic orientation of liquid crystals and optical recognition of analytes: application to the determination of progesterone

  • Xiaochen Lu
  • Xinran Song
  • Jiayin Du
  • Yan Zhang
  • Lingqin Zhang
  • Xingliang XiongEmail author
Original Paper
  • 15 Downloads

Abstract

The work describes a simplified method for the preparation of liquid crystal (LC) bioassay using DNA-based capture molecules and having lower detection limits. The capture DNA probes of the stem-loop structure were immobilized on the surface of a glass slide. A homeotropic orientation of LC molecules can be obtained with the proper surface coverage of capture DNA probes. In the presence of analytes (specifically shown here for the progesterone as a model analyte), the molecular binding between capture DNA probes and progesterone opens the loop of the capture DNA probes. The opened sequence is then amenable to hybridization with a reporter DNA probe that is immobilized on gold nanoparticles. This changes the surface microstructure, disrupts the orientation of LC molecules, and results in an enhanced optical response, expressed as the average grey value of the images. This new kind of surface treatment for simultaneous recognition of target molecules and homeotropic anchoring of LCs reduces the number of preparation steps and makes the process of LC bioassay easier. This method has a detection limit as low as 0.1 pmol·L−1 of progesterone.

Graphical abstract

Schematic presentation of the liquid crystal-based DNA assay. DMOAP: Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride; TEA: Triethoxsilylbutyraldehyde; 5CB: 4-cyano-4′-pentylbiphenyl; P4: progesterone.

Keywords

AuNPs Signal amplification Stem-loop structure Triethoxsilylbutyraldehyde Self-assembled Silanization Monolayer Surface microstructure Average grey value Bioassay 

Notes

Acknowledgments

This research is funded by the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0165).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3558_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3686 kb)

References

  1. 1.
    Cupta VK, Skaife JJ, Dubrovsky TB, Abbott NL (1998) Optical amplification of ligand-receptor binding using liquid crystals. Science 279:2077–2080CrossRefGoogle Scholar
  2. 2.
    Shah RR, Abbott NL (2001) Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals. Science 293:1296–1299CrossRefGoogle Scholar
  3. 3.
    Zhang J, Su XX, Yang D, Luan CL (2018) Label-free liquid crystal biosensor for cecropin B detection. Talanta 186:60–64CrossRefGoogle Scholar
  4. 4.
    An ZF, Jang CH (2018) Label-free optical detection of aflatoxin by using a liquid crystal-based. Immunosensor. Microchem J 142:335–342CrossRefGoogle Scholar
  5. 5.
    Hussain Z, Qazi F, Ahmed MI, Usman A, Riaz A, DidarAbbasi A (2016) Liquid crystals based sensing platform-technological aspects. Biosens Bioelectron 85:11 0–11 1127CrossRefGoogle Scholar
  6. 6.
    Jannat M, Yang KL (2018) Continuous protease assays using liquid crystal as a reporter. Sensors Actuators B Chem 269:8–14CrossRefGoogle Scholar
  7. 7.
    Zhou LL, Kang Q, Hu QZ, Yu L (2018) Ultrasensitive detection of glutathione based on liquid crystals in the presence of γ-glutamyl transpeptidase. Anal Chim Acta 1040:187–195CrossRefGoogle Scholar
  8. 8.
    Wang Y, Zhou LL, Kang Q, Yu L (2018) Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA. Talanta 183:223–227CrossRefGoogle Scholar
  9. 9.
    Chuang CH, Lin YC, Chen WL, Chen YH, Chen YX, Chen CM, Shiu HW, Chang LY, Chen CH, Chen CH (2016) Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin. Biosens Bioelectron 78:213–220CrossRefGoogle Scholar
  10. 10.
    Tan H, Li X, Liao SZ, Yu RQ, Wu ZY (2014) Highly-sensitive liquid crystal biosensor based on DNA dendrimers-mediated optical reorientation. Biosens Bioelectron 62:84–89CrossRefGoogle Scholar
  11. 11.
    Lai SL, Huang SS, Bi XY, Yang KL (2009) Optical imaging of surface-immobilized oligonucleotide probes on DNA microarrays using liquid crystals. Langmuir 25:311–316CrossRefGoogle Scholar
  12. 12.
    Liu YY, Yang KL (2015) Applications of metal ions and liquid crystals for multiplex detection of DNA. J Colloid Interface Sci 439:149–153CrossRefGoogle Scholar
  13. 13.
    Kahn FJ (1973) Orientation of liquid crystals by surface coupling agents. Appl Phys Lett 22:386–388CrossRefGoogle Scholar
  14. 14.
    Pylypenko S, Artyushkova K, Fulghum JE, Buluy O, Aryasova N, Reznikov Y (2006) Ion beam alignment of nematic liquid crystal on MEH-PPV-layers. Mol Cryst Liq Cryst 454:167–177CrossRefGoogle Scholar
  15. 15.
    Singh G, Prakash GV, Choudhary A, Biradar AM (2010) Homeotropic alignment of nematic liquid crystals with negative dielectric anisotropy. Phys B Condens Matter 405:2118–2121CrossRefGoogle Scholar
  16. 16.
    Zhang MM, Jang CH (2014) Liquid crystal-based detection of thrombin coupled to interactions between a polyelectrolyte and a phospholipid monolayer. Anal Biochem 455:13–19CrossRefGoogle Scholar
  17. 17.
    Lee SW, Chae B, Ree M, Lee B, Choi W, Kim SB, Kim SI, Park SM, Jung JC, Lee KH, Ree M (2005) Rubbing-induced surface morphology and polymer segmental reorientations of a model brush polyimide and interactions with liquid crystals at the surface. Chem Mater 15:3105–3112CrossRefGoogle Scholar
  18. 18.
    Yang SY, Wu C, Tan H, Wu Y, Liao SZ, Wu ZY, Shen GL, Yu RQ (2013) Label-free liquid crystal biosensor based on specific oligonucleotide probes for heavy metal ions. Anal Chem 85:14–18CrossRefGoogle Scholar
  19. 19.
    Yang SY, Liu YM, Tan H, Wu C, Wu ZY, Shen GL, Yu RQ (2012) Gold nanoparticle based signal enhancement liquid crystal biosensors for DNA hybridization assays. Chem.Commun. 48:2861–2863CrossRefGoogle Scholar
  20. 20.
    Ren HH, An ZF, Jang CH (2019) Liquid crystal-based aptamer sensor for sensitive detection of bisphenol a. Microchem J 18:31227–3122XGoogle Scholar
  21. 21.
    Liao SZ, Qiao YN, Han WT, Xie ZX, Wu ZY, Shen GL, Yu RQ (2012) Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal Chem 84:45–49CrossRefGoogle Scholar
  22. 22.
    Li X, Li G, Yang M, Chen LC, Xiong XL (2015) Gold nanoparticle based signal enhancement liquid crystal biosensors for tyrosine assays. Sensors Actuators B Chem 215:152–158CrossRefGoogle Scholar
  23. 23.
    Tan H, Yang SY, Shen GL, Yu RQ, Wu ZY (2010) Signal-enhanced liquid-crystal DNA biosensors based on enzymatic metal deposition. Angew Chem 122:8790–8793CrossRefGoogle Scholar
  24. 24.
    Hody DH, Yang KL, Yue L, Yung L (2010) The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes. Biomaterials 31:3008–3015CrossRefGoogle Scholar
  25. 25.
    Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound Alkylamines and gold nanoparticles. Langmuir 19:6277–6282CrossRefGoogle Scholar
  26. 26.
    Caruntu D, Cushing BL, Caruntu G, Connor CJO (2005) Attachment of gold Nanograins onto colloidal magnetite nanocrystals. Chem Mater 17:3398–3402CrossRefGoogle Scholar
  27. 27.
    Shen J, He FJ, Chen LC, Ding L, Liu HL, Xiong XL (2017) Liquid crystal-based detection of DNA hybridization using surface immobilized single-stranded DNA. Microchim Acta 184:3137–3144CrossRefGoogle Scholar
  28. 28.
    Alhadrami HA, Chinnappan R, Eissa S, Rahamn AA, Zourob M (2017) High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Anal Biochem 525:78–84CrossRefGoogle Scholar
  29. 29.
    Daems D, Lu J, Delport F, Marien N, Orbie L, Aernouts B, Adriaens I, Huybrechts T, Saeys W, Spasic D, Lammertyn J (2017) Competitive inhibition assay for the detection of progesterone in dairy milk using a fiber optic SPR biosensor. Anal Chim Acta 950:1–6CrossRefGoogle Scholar
  30. 30.
    Samsonova JV, Safronova VA, Osipov AP (2018) Rapid flow-through enzyme immunoassay of progesterone in whole cows' milk. Anal Biochem 545:43–48CrossRefGoogle Scholar
  31. 31.
    Jiménez GC, Eissa S, Ng A, Alhadrami H, Zourob M, Siaj M (2015) Aptamer-based label-free Impedimetric biosensor for the detection of progesterone. Anal Chem 87:1075–1082CrossRefGoogle Scholar
  32. 32.
    Du GS, Wang LM, Zhang DW, Ni X, Zhou XT, Xu HY, Xu LR, Wu SJ, Zhang T, Wang WH (2016) Colorimetric aptasensor for progesterone detection based on surfactant-induced aggregation of gold nanoparticles. Anal Biochem 514:2–7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xiaochen Lu
    • 1
  • Xinran Song
    • 2
  • Jiayin Du
    • 1
  • Yan Zhang
    • 1
  • Lingqin Zhang
    • 1
  • Xingliang Xiong
    • 1
    Email author
  1. 1.Laboratory of Biomedical EngineeringChongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of Anesthesiology, Affiliated Hospital 1st (Southwest Hospital)Army Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations