Advertisement

Microchimica Acta

, 186:440 | Cite as

Voltammetric determination of cadmium(II), lead(II) and copper(II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly(1,8-diaminonaphthalene)

  • Khalid M. HassanEmail author
  • Ghada M. Elhaddad
  • Magdi AbdelAzzem
Original Paper
  • 46 Downloads

Abstract

A glassy carbon (GC) electrode was modified with poly(1,8-diaminonaphthalene) (p-1,8-DAN) that was coated with silver nanoparticles (Ag NPs) (size: 10.0–60.0 nm by TEM) by electrodeposition process using cyclic voltammetry (CV) technique. The resulting nanocomposite was characterized by FE-SEM, AFM, EDX, XPS, TEM and XRD. The surface area and the electrochemical characteristics of the electrode were investigated by CV and square wave voltammetry (SWV) techniques, and the probe preparation conditions were optimized. The electrode was used for individual and simultaneous determination of the heavy metal ions cadmium(II) (Cd2+), lead(II) (Pb2+) and copper(II) (Cu2+) in water samples by square wave anodic stripping voltammetry (ASV) using scan rate 0.005 V. s−1. The probe showed well separated anodic stripping peaks for Cd2+, Pb2+, and Cu2+. Attractive features of the method include (a) peak voltages of −1.02, −0.78 and − 0.32 V (vs. Ag/AgCl) for the three ions, and (b) low limits of detection (19, 30 and 6 ng.L−1, respectively. The electrode can also detect zinc(II) (Zn2+) and mercury(II) (Hg2+), typically at −1.36 V and + 0.9, respectively.

Graphical abstract

Schematic presentation of simultaneous electrochemical determination of Pb2+, Cd2+, and Cu2+ at a poly(1,8-diaminonaphthalene)-modified glassy carbon electrode coated with silver nanoparticles.

Keywords

Nanoprobe Electrodeposition Individual and simultaneous determination Stripping anodic voltammetry 

Notes

Acknowledgements

The authors are appreciative to Alexander von Humboldt Foundation for providing some electrodes and accessories.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3552_MOESM1_ESM.docx (147 kb)
ESM 1 (DOCX 147 kb)

References

  1. 1.
    El Mhammedi MA, Achak M, Bakasse M (2013) Evaluation of a platinum electrode modified with hydroxyapatite in the lead (II) determination in a square wave voltammetric procedure. Arab J Chem 6(3):299–305.  https://doi.org/10.1016/j.arabjc.2010.10.010 CrossRefGoogle Scholar
  2. 2.
    Pohl P (2009) Determination of metal content in honey by atomic absorption and emission spectrometries. Trends Anal Chem 28(1):117–128.  https://doi.org/10.1016/j.trac.2008.09.015 CrossRefGoogle Scholar
  3. 3.
    Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanal 17(15–16):1341–1346.  https://doi.org/10.1002/elan.200403270 CrossRefGoogle Scholar
  4. 4.
    Su Z, Liu Y, Zhang Y, Xie Q, Chen L, Huang Y, Fu Y, Meng Y, Li X, Ma M, Yao S (2013) Thiol–ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd2+ and Pb2+. Analyst 138(4):1180–1186.  https://doi.org/10.1039/C2AN36114K CrossRefPubMedGoogle Scholar
  5. 5.
    Tang J, Li Z, Xia Q, Williams RS (2009) Fractal structure formation from Ag nanoparticle films on insulating substrates. Langmuir 25(13):7222–7225.  https://doi.org/10.1021/la9010532 CrossRefPubMedGoogle Scholar
  6. 6.
    March G, Nguyen T, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosens 5(2):241–275.  https://doi.org/10.3390/bios5020241 CrossRefGoogle Scholar
  7. 7.
    Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253(11–12):1607–1618.  https://doi.org/10.1016/j.ccr.2009.01.005 CrossRefGoogle Scholar
  8. 8.
    Cheon J, Lee J-H (2008) Synergistically integrated nanoparticles as multimodal probes for Nanobiotechnology. Acc Chem Res 41(12):1630–1640.  https://doi.org/10.1021/ar800045c CrossRefPubMedGoogle Scholar
  9. 9.
    Berlina AN, Zherdev AV, Dzantiev BB (2019) Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules. Microchim Acta 186(3):172.  https://doi.org/10.1007/s00604-018-3168-9 CrossRefGoogle Scholar
  10. 10.
    Hahm J-I (2013) Biomedical detection via macro- and nano-sensors fabricated with metallic and semiconducting oxides. J BIiomed Nanotechnol 9(1):1–25. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766318/ CrossRefGoogle Scholar
  11. 11.
    Nishijo J, Oishi O, Judai K, Nishi N (2007) Facile and mass-producible fabrication of one-dimensional ag nanoparticle arrays. Chem Mater 19(19):4627–4629.  https://doi.org/10.1021/cm071688i CrossRefGoogle Scholar
  12. 12.
    Zheng J, Li X, Gu R, Lu T (2002) Comparison of the surface properties of the assembled silver nanoparticle electrode and roughened silver electrode. J Phys Chem B 106(5):1019–1023.  https://doi.org/10.1021/jp012083r CrossRefGoogle Scholar
  13. 13.
    Sandmann G, Dietz H, Plieth W (2000) Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J Electroanal Chem 491(1–2):78–86.  https://doi.org/10.1016/S0022-0728(00)00301-6 CrossRefGoogle Scholar
  14. 14.
    Xing S, Xu H, Chen J, Shi G, Jin L (2011) Nafion stabilized silver nanoparticles modified electrode and its application to Cr (VI) detection. J Electroanal Chem 652(1–2):60–65.  https://doi.org/10.1016/j.jelechem.2010.03.035 CrossRefGoogle Scholar
  15. 15.
    Hassan K, Abdel Azzem M (2015) Electrocatalytic oxidation of ascorbic acid, uric acid, and glucose at nickel nanoparticles/poly (1-amino-2-methyl-9,10-anthraquinone) modified electrode in basic medium. J Appl Electrochem 45(6):567–575.  https://doi.org/10.1007/s10800-015-0805-4 CrossRefGoogle Scholar
  16. 16.
    Ng KH, Liu H, Penner RM (2000) Subnanometer silver clusters exhibiting unexpected electrochemical Metastability on graphite. Langmuir 16(8):4016–4023.  https://doi.org/10.1021/la9914716 CrossRefGoogle Scholar
  17. 17.
    Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6(1):73.  https://doi.org/10.1186/1752-153x-6-73 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bard AJ, Faulkner LR (2001) Fundamentals and applications, vol 2. Electrochemical MethodsGoogle Scholar
  19. 19.
    Salih FE, Ouarzane A, El Rhazi M (2017) Electrochemical detection of lead (II) at bismuth/poly(1,8-diaminonaphthalene) modified carbon paste electrode. Arab J Chem 10(5):596–603.  https://doi.org/10.1016/j.arabjc.2015.08.021 CrossRefGoogle Scholar
  20. 20.
    Hutton LA, Newton ME, Unwin PR, Macpherson JV (2011) Factors controlling stripping voltammetry of Lead at polycrystalline boron doped diamond electrodes: new insights from high-resolution microscopy. Anal Chem 83(3):735–745.  https://doi.org/10.1021/ac101626s CrossRefPubMedGoogle Scholar
  21. 21.
    Hassan KM, Elsaid Gaber S, Fatehy M, Abdel Azzem M (2018) Novel sensor based on poly (1,2-Diaminoanthraquinone) for individual and simultaneous anodic stripping voltammetry of Cd2+, Pb2+, Cu2+ and Hg2+. J Electroanal 30(6):1155–1162.  https://doi.org/10.1002/elan.201800097 CrossRefGoogle Scholar
  22. 22.
    Vu HD, Nguyen L-H, Nguyen TD, Nguyen HB, Nguyen TL, Tran DL (2015) Anodic stripping voltammetric determination of Cd2+ and Pb2+ using interpenetrated MWCNT/P1,5-DAN as an enhanced sensing interface. Ionics 21(2):571–578.  https://doi.org/10.1007/s11581-014-1199-8 CrossRefGoogle Scholar
  23. 23.
    Guo Z, Li D-d, Luo X-k, Li Y-h, Zhao Q-N, Li M-m, Zhao Y-t, Sun T-s, Ma C (2017) Simultaneous determination of trace Cd (II), Pb (II) and Cu (II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode. J Colloid Interface Sci 490:11–22.  https://doi.org/10.1016/j.jcis.2016.11.006 CrossRefPubMedGoogle Scholar
  24. 24.
    Hwang GH, Han WK, Park JS, Kang SG (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76(2):301–308.  https://doi.org/10.1016/j.talanta.2008.02.039 CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Z, Wang H, Zhang Z, Liu G (2014) Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode. Sensors Actuators B Chem 199:7–14.  https://doi.org/10.1016/j.snb.2014.03.092 CrossRefGoogle Scholar
  26. 26.
    Ouyang R, Zhu Z, Tatum CE, Chambers JQ, Xue Z-L (2011) Simultaneous stripping detection of Zn (II), Cd (II) and Pb (II) using a bimetallic Hg–Bi/single-walled carbon nanotubes composite electrode. J Electroanal Chem 656(1–2):78–84.  https://doi.org/10.1016/j.jelechem.2011.01.006 CrossRefGoogle Scholar
  27. 27.
    Huang H, Chen T, Liu X, Ma H (2014) Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal Chim Acta 852:45–54.  https://doi.org/10.1016/j.aca.2014.09.010 CrossRefPubMedGoogle Scholar
  28. 28.
    Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649(2):196–201.  https://doi.org/10.1016/j.aca.2009.07.030 CrossRefPubMedGoogle Scholar
  29. 29.
    Pokpas K, Zbeda S, Jahed N, Mohamed N, Baker PG, Iwuoha EI (2014) Electrochemically reduced graphene oxide pencil-graphite in situ plated bismuth-film electrode for the determination of trace metals by anodic stripping voltammetry. Int J Electrochem Sci 9:736–759. http://hdl.handle.net/10566/3290 Google Scholar
  30. 30.
    Chamjangali MA, Kouhestani H, Masdarolomoor F, Daneshinejad H (2015) A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly(pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sensors Actuators B Chem 216:384–393.  https://doi.org/10.1016/j.snb.2015.04.058 CrossRefGoogle Scholar
  31. 31.
    Serrano N, González-Calabuig A, del Valle M (2015) Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd (II), Pb (II) and Cu (II). Talanta 138:130–137.  https://doi.org/10.1016/j.talanta.2015.01.044 CrossRefPubMedGoogle Scholar
  32. 32.
    Sahoo PK, Panigrahy B, Sahoo S, Satpati AK, Li D, Bahadur D (2013) In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: As an electroactive material for analysis of heavy metals. Biosens Bioelectron 43:293–296.  https://doi.org/10.1016/j.bios.2012.12.031 CrossRefPubMedGoogle Scholar
  33. 33.
    Silva ACO, Oliveira LCF, Delfino AV, Meneghetti MR, Abreu FC (2016) Electrochemical study of carbon nanotubes/Nanohybrids for determination of metal species Cu2+ and Pb2+ in water samples. J AnalL Methods Chem 2016:1–12.  https://doi.org/10.1155/2016/9802738 CrossRefGoogle Scholar
  34. 34.
    Chira A, Bucur B, Bucur MP, Radu GL (2014) Electrode-modified with nanoparticles composed of 4,4[prime or minute]-bipyridine-silver coordination polymer for sensitive determination of Hg (II), Cu (II) and Pb (II). New J Chem 38(11):5641–5646.  https://doi.org/10.1039/C4NJ01245C CrossRefGoogle Scholar
  35. 35.
    Sang S, Li D, Zhang H, Sun Y, Jian A, Zhang Q, Zhang W (2017) Facile synthesis of AgNPs on reduced graphene oxide for highly sensitive simultaneous detection of heavy metal ions. RSC Adv 7(35):21618–21624.  https://doi.org/10.1039/C7RA02267K CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrochemistry Research Laboratory, Physics and Mathematics Engineering Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  2. 2.Electrochemistry Laboratory, Chemistry Department, Faculty of ScienceMenoufia UniversityShibin El-KomEgypt

Personalised recommendations