Microchimica Acta

, 186:423 | Cite as

A semi-quantitative rapid multi-range gradient lateral flow immunoassay for procalcitonin

  • Kseniya V. SerebrennikovaEmail author
  • Jeanne V. Samsonova
  • Alexander P. Osipov
Short Communication


A rapid semi-quantitative gradient lateral flow immunoassay (LFIA) of procalcitonin (PCT), a peptide precursor of the hormone calcitonin, was developed. The method is based on particular analyte cut-offs by immobilizing specific antibodies on the test strip with a consistent (gradient) increase in concentration from line to line. Semi-quantitative multi-range analysis is evaluated visually by counting the number of colored test lines corresponding to a certain concentration range of sepsis marker: [PCT]˂0.25; 0.25 ≤ [PCT] < 0.5; 0.5 ≤ [PCT] < 2; 2 ≤ [PCT] < 10; [PCT] ≥ 10 ng·mL−1. This multi-range gradient LFIA was implemented by using two types of label: spherical gold nanoparticles (35 nm) and hierarchical popcorn-like gold nanoparticles (100 nm). The comparison of this LFIA with an ELISA (for n = 82) yielded 87.5% and 76.6% sensitivities, and 92.3% and 92.3% specificities, respectively. Thus, multi-range gradient LFIA performs well at PCT thresholds, which is important for early diagnosis of sepsis and severe bacterial infection. In our perception, this method has a wide scope in that it may be implemented in numerous other LFIA based test systems.

Graphical abstract

Schematic of the gradient lateral flow immunoassay for determination of clinically relevant procalcitonin ranges. It allows to reach the correlation between the number of developed test lines and procalcitonin concentration range in serum by pre-immobilization of capture antibodies in a consistently (gradient) increasing concentration.


Barcode Immunochromatography Test strip Cut-off adjustment Gold nanospheres Gold nanopopcorns Sepsis marker Diagnostic cut-offs 



We thank the medical staff of department of clinical laboratory headed by Natalia S. Pozhenko for ensuring the highest possible level of data capture and sample collection.


The work was financially supported by the Ministry of Education and Science of the Russian Federation as a based part of state assignment Organization of scientific researches (project No. 16.6548.2017/BY).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3550_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 39 kb)


  1. 1.
    Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369(21):2069–2851. CrossRefGoogle Scholar
  2. 2.
    Becker KL, Snider RH, Nylén ES (2008) Procalcitonin assay in systemic inflammation infection, and sepsis: clinical utility and limitations. Crit Care Med 36:941–952. CrossRefPubMedGoogle Scholar
  3. 3.
    Meisner M (1993) Procalcitonin-biochemistry and clinical diagnosis. Lancet 341:515–518CrossRefGoogle Scholar
  4. 4.
    Brunkhorst FM, Wegscheider K et al (2000) Procalcitonin for early diagnosis and differentiation of SIRS, sepsis, severe sepsis, and septic shock. Intensive Care Med 26:148–152. CrossRefGoogle Scholar
  5. 5.
    Reinhart K, Meisner M et al (2001) Diagnosis of sepsis: novel and conventional parameters. Adv Sepsis 1(2):42–51Google Scholar
  6. 6.
    Morgenthaler NG, Struck J, Fischer-Schulz C, Bergmann A (2002) Sensitive immunoluminometric assay for the detection of procalcitonin. ClinChem 48(5):788–790Google Scholar
  7. 7.
    Fortunato A (2016) A new sensitive automated assay for procalcitonin detection: LIAISON® BRAHMS PCT® II GEN. Pract Lab Med 6:1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim MH, Lim H, Kang SY, Lee WI, Suh JT, Lee HJ (2011) Utility of Procalcitonin as an early diagnostic marker of bacteremia in patients with acute fever. Yonsei Med J 52(2):276–281. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li H, Sun Y, Elseviers J, Muyldermans S, Liu S, Wan Y (2014) A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst 139(15):3718–3721. CrossRefPubMedGoogle Scholar
  10. 10.
    Qi XP, Huang YY, Lin ZS, Xu L, Yu H (2016) Dual-quantum-dots-labeled lateral flow strip rapidly quantifies Procalcitonin and C-reactive protein. Nanoscale Res Lett 11:167. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liao T, Yuan F, Shi C, He CX, Li Z (2016) Lanthanide chelate-encapsulated polystyrene nanoparticles for rapid and quantitative immunochromatographic assay of procalcitonin. RSC Adv 6:103463–103470. CrossRefGoogle Scholar
  12. 12.
    Shao XY, Wang CR, Xie CM, Wang XG, Liang RL, Xu WW (2017) Rapid and sensitive lateral flow immunoassay method for Procalcitonin (PCT) based on time-resolved Immunochromatography. Sensors (Basel) 17(3):480. CrossRefGoogle Scholar
  13. 13.
    Wang Y, Wang L, Zhang C, Liu F (2019) A lateral flow assay for copper(II) utilizing catalytic and stem-loop based signal amplification. Microchim Acta 186(2):82. CrossRefGoogle Scholar
  14. 14.
    Lu X, Mei T, Guo Q, Zhou W, Li X, Chen J, Zhou X, Sun N, Fang Z (2019) Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles. Microchim Acta 186(1):2. CrossRefGoogle Scholar
  15. 15.
    Ruppert C, Phogat N, Laufer S, Kohl M, Deigner HP (2019) A smartphone readout system for gold nanoparticle-based lateral flow assays: application to monitoring of digoxigenin. Microchim Acta 186(2):119. CrossRefGoogle Scholar
  16. 16.
    Taranova NA, Urusov AE, Sadykhov EG, Zherdev AV, Dzantiev BB (2017) Bifunctional gold nanoparticles as an agglomeration-enhancing tool for highly sensitive lateral flow tests: a case study with procalcitonin. Microchim Acta 184(10):4189–4195. CrossRefGoogle Scholar
  17. 17.
    Pelinka L, Sendova K, Mauritz W et al (2003) Quantitative versus Semiquantitative Procalcitonin Measurement. Eur J Trauma 29:81–84. CrossRefGoogle Scholar
  18. 18.
    Kim KE, Han JY (2010) Evaluation of the clinical performance of an automated procalcitonin assay for the quantitative detection of bloodstream infection. Korean J Lab Med 30(2):153–159. CrossRefPubMedGoogle Scholar
  19. 19.
    Ugajin M, Yamaki K, Hirasawa N, Yagi T (2014) Predictive values of semi-quantitative procalcitonin test and common biomarkers for the clinical outcomes of community-acquired pneumonia. Respir Care 59(4):564–573. CrossRefPubMedGoogle Scholar
  20. 20.
    Lou SC, Patel C, Ching S, Gordon J (1993) One-step competitive immunochromatographic assay for semiquantitative determination of lipoprotein(a) in plasma. Clin Chem 39(4):619–624PubMedGoogle Scholar
  21. 21.
    Leung W, Chan CP, Rainer TH, Ip M, Cautherley GWH, Renneberg R (2008) InfectCheck CRP barcode-style lateral flow assay for semi-quantitative detection of C-reactive protein in distinguishing between bacterial and viral infections. J Immunol Methods 336:30–36. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang D, Li P, Zhang Q, Li R, Zhang W, Ding X, Li CM (2012) A naked-eye based strategy for semi-quantitative immunochromatographic assay. Anal Chim Acta 740:74–79. CrossRefPubMedGoogle Scholar
  23. 23.
    Fang C, Chen Z, Li L, Xi J (2011) Barcode lateral flow immunochromatographic strip for prostate acid phosphatase determination. J Pharm Biomed Anal 56:1035–1040. CrossRefPubMedGoogle Scholar
  24. 24.
    Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB (2017) Setting up the cut-off level of a sensitive barcode lateral flow assay with magnetic nanoparticles. Talanta 164:69–76. CrossRefPubMedGoogle Scholar
  25. 25.
    Serebrennikova K, Samsonova J, Osipov A (2018) Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay. Nano-Micro Lett 10(24):1–8. CrossRefGoogle Scholar
  26. 26.
    Osipov AP, Grigorenko VG, Andreeva IP, Kondakov SE (2012) RF Patent 2510510Google Scholar
  27. 27.
    Gorovitz BM, Osipov AP, Egorov AM (1993) New immunoassay technique using antibody immobilized on a membrane and a flow cuvette as reaction vessel. J Immunol Methods 157(193)Google Scholar
  28. 28.
    Serebrennikova KV, Samsonova JV, Osipov AP (2017) Gradient lateral flow immunoassay of human chorionic gonadotropin. Mosc Univ Chem Bull 72:325–327. CrossRefGoogle Scholar
  29. 29.
    FDA-NIH Biomarker Working Group (2016) BEST (biomarkers, EndpointS, and other tools) resource. Maryland: Food and Drug Administration-National Institutes of Health biomarker working Group.
  30. 30.
    Sotnikov DV, Zherdev AV, Dzantiev BB (2017) Mathematical modeling of bioassays. Biochem Mosc 82(13):1744–1766. CrossRefGoogle Scholar
  31. 31.
    Qian S, Bau HH (2003) A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem 322(1):89–98CrossRefGoogle Scholar
  32. 32.
    Safenkova IV, Zherdev AV, Dzantiev BB (2010) Correlation between the composition of multivalent antibody conjugates with colloidal gold nanoparticles and their affinity. J Immunol Methods 357(1–2):17–25. CrossRefPubMedGoogle Scholar
  33. 33.
    Xu P, Li J, Huang X, Duan H, Ji Y, Xiong Y (2016) Effect of the tip length of multi-branched AuNFs on the detection performance of immunochromatographic assays. Anal Methods 8(16):3316–3324. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Kseniya V. Serebrennikova
    • 1
    • 2
    Email author
  • Jeanne V. Samsonova
    • 1
    • 2
  • Alexander P. Osipov
    • 1
    • 2
  1. 1.Chemistry FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations