Microchimica Acta

, 186:453 | Cite as

Eggshell membrane-templated gold nanoparticles as a flexible SERS substrate for detection of thiabendazole

  • Qi Ding
  • Zewen Kang
  • Xingsheng He
  • Minggong Wang
  • Mengshi LinEmail author
  • Hetong LinEmail author
  • Da-Peng YangEmail author
Original Paper


The authors describe a three-dimensional (3D) flexible interconnected porous nanocomposite membrane for use in surface-enhanced Raman scattering (SERS). It was obtained via in -situ deposition of gold nanoparticles (AuNPs, ca. 10 nm) on eggshell membranes (ESM). The AuNP/ESM nanocomposites were used as a SERS substrate for detection of the pesticide thiabendazole (TBZ) with prominent Raman bands at 1180, 1280, and 1580 cm−1. The abundant “hot spots” are generated by the closely arranged AuNPs in the 3D geometry of the ESM networks. This makes the SERS substrate highly sensitive because of remarkable signal amplification. The substrates were applied to the rapid detection of TBZ in Oolong tea. The limit of detection for TBZ is 0.1 ppm.

Graphical abstract

Schematic presentation of a three-dimensional flexible interconnected porous nanocomposite membrane as surface-enhanced Raman scattering (SERS) substrate for detection of thiabendazole (TBZ) in tea.


Hot spot Network Pesticides Food safety Tea analysis Nanotechnology 



This study was supported by the National Natural Science Foundation of China (Grant No. 81472001), the Tongjiang Scholars Program of Quanzhou City, Natural Science Foundation of Fujian Province (2015 J05030), and Quanzhou City Science & Technology Program of China (2017G023).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3543_MOESM1_ESM.docx (105 kb)
ESM 1 (DOCX 104 kb)


  1. 1.
    Yuan Y, Panwar N, Yap SHK, Wu Q, Zeng S, Xu J, Tjin SC, Song J, Qu J, Yong K-T (2017) SERS-based ultrasensitive sensing platform: an insight into design and practical applications. Coordin Chem Rev 337:1–33CrossRefGoogle Scholar
  2. 2.
    Szlag VM, Rodriguez RS, He J, Hudson-Smith N, Kang H, Le N, Reineke TM, Haynes CL (2018) Molecular affinity agents for intrinsic surface-enhanced Raman scattering (SERS) sensors. ACS Appl Mater Inter 10:31825–31844CrossRefGoogle Scholar
  3. 3.
    He X, Yang D-P, Zhang X, Liu M, Kang Z, Lin C, Jia N, Luque R (2019) Waste eggshell membrane-templated CuO-ZnO nanocomposites with enhanced adsorption, catalysis and antibacterial properties for water purification. Chem Eng J 369:621–633CrossRefGoogle Scholar
  4. 4.
    Alula MT, Krishnan S, Hendricks NR, Karamchand L, Blackburn JM (2017) Identification and quantitation of pathogenic bacteria via in-situ formation of silver nanoparticles on cell walls, and their detection via SERS. Microchim Acta 184:219–227CrossRefGoogle Scholar
  5. 5.
    Chen Y, Zhang Y, Pan F, Liu J, Wang K, Zhang C, Cheng S, Lu L, Zhang W, Zhang Z, Zhi X, Zhang Q, Alfranca G, de la Fuente JM, Chen D, Cui D (2016) Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric Cancer patients from healthy persons. ACS Nano 10:8169–8179CrossRefGoogle Scholar
  6. 6.
    Tian F, Conde J, Bao C, Chen Y, Curtin J, Cui D (2016) Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 106:87–97CrossRefGoogle Scholar
  7. 7.
    Chen Y, Cheng S, Zhang A, Song J, Chang J, Wang K, Zhang Y, Li S, Liu H, Alfranca G, Aslam MA, Chu B, Wang C, Pan F, Ma L, de la Fuente JM, Ni J, Cui D (2018) Salivary analysis based on surface enhanced Raman scattering sensors distinguishes early and advanced gastric Cancer patients from healthy persons. J Biomed Nanotechnol 14:1773–1784CrossRefGoogle Scholar
  8. 8.
    Wang L, Guo T, Lu Q, Yan X, Zhong D, Zhang Z, Ni Y, Han Y, Cui D, Li X, Huang L (2015) Sea-urchin-like au nanocluster with surface-enhanced raman scattering in detecting epidermal growth factor receptor (EGFR) mutation status of malignant pleural effusion. ACS Appl Mater Interfaces 7:359–369CrossRefGoogle Scholar
  9. 9.
    Wang Y, Jin Y, Xiao X, Zhang T, Yang H, Zhao Y, Wang J, Jiang K, Fan S, Li Q (2018) Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale 10:15195–15204CrossRefGoogle Scholar
  10. 10.
    Liu M, Zheng C, Cui M, Zhang X, Yang DP, Wang X, Cui D (2018) Graphene oxide wrapped with gold nanorods as a tag in a SERS based immunoassay for the hepatitis B surface antigen. Mikrochim Acta 185:458CrossRefGoogle Scholar
  11. 11.
    Fu G, Sun DW, Pu H, Wei Q (2019) Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta 195:841–849CrossRefGoogle Scholar
  12. 12.
    Kim NH, Hwang W, Baek K, Rohman MR, Kim J, Kim HW, Mun J, Lee SY, Yun G, Murray J, Ha JW, Rho J, Moskovits M, Kim K (2018) Smart SERS hot spots: single molecules can be positioned in a Plasmonic Nanojunction using host-guest chemistry. J Am Chem Soc 140:4705–4711CrossRefGoogle Scholar
  13. 13.
    Wang R, Xu Y, Wang R, Wang C, Zhao H, Zheng X, Liao X, Cheng L (2017) A microfluidic chip based on an ITO support modified with ag-au nanocomposites for SERS based determination of melamine. Microchim Acta 184:279–287CrossRefGoogle Scholar
  14. 14.
    Xu Q, Guo X, Xu L, Ying Y, Wu Y, Wen Y, Yang H (2017) Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues. Sensors Actuators B Chem 241:1008–1013CrossRefGoogle Scholar
  15. 15.
    Wang Y, Su Z, Wang L, Dong J, Xue J, Yu J, Wang Y, Hua X, Wang M, Zhang C, Liu F (2017) SERS assay for copper(II) ions based on dual hot-spot model coupling with MarR protein: new cu(2+)-specific biorecognition element. Anal Chem 89:6392–6398CrossRefGoogle Scholar
  16. 16.
    Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K (2017) SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal Chem 89:12666–12673CrossRefGoogle Scholar
  17. 17.
    Chappa S, Mhatre AM, Adya VC, Pandey AK (2017) Egg-shell membrane mimicking synthetic polymer membrane supported palladium nanoparticles for catalyzing reduction of uranyl(VI) ions. Appl Catal B-Environ 203:53–64CrossRefGoogle Scholar
  18. 18.
    Yin L, Xu G, Nie P, Dou H, Zhang X (2018) MXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem Eng J 352:695–703CrossRefGoogle Scholar
  19. 19.
    Zhong SL, Zhuang J, Yang DP, Tang D (2017) Eggshell membrane-templated synthesis of 3D hierarchical porous au networks for electrochemical nonenzymatic glucose sensor. Biosens Bioelectron 96:26–32CrossRefGoogle Scholar
  20. 20.
    Celina Selvakumari J, Nishanthi ST, Dhanalakshmi J, Ahila M, Pathinettam Padiyan D (2018) Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application. Appl Surf Sci 441:530–537CrossRefGoogle Scholar
  21. 21.
    Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44:6330–6374CrossRefGoogle Scholar
  22. 22.
    Yang P, Xie J, Zhong C (2018) Biowaste-derived three-dimensional porous network carbon and bioseparator for high-performance asymmetric supercapacitor. ACS Appl Energy Mater 1:616–622CrossRefGoogle Scholar
  23. 23.
    Preetam Guha Ray PP, Kumar Srivas P, Basak P, Roy S Dhara a S(2018) Surface modification of eggshell membrane with electrospun chitosan Polycaprolactone nanofibers for enhanced dermal wound healing. ACS Appl Bio Mater 1:985–998CrossRefGoogle Scholar
  24. 24.
    Manthiram S-HC a A (2014) Eggshell membrane-derived polysulfide absorbents for highly stable and reversible lithium–sulfur cells. ACS sustain. Chem. 2:2248–2252Google Scholar
  25. 25.
    Yang D-P, Chen S, Huang P, Wang X, Jiang W, Pandoli O, Cui D (2010) Bacteria-template synthesized silver microspheres with hollow and porous structures as excellent SERS substrate. Green Chem 12:2038CrossRefGoogle Scholar
  26. 26.
    Chung SH, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Adv Mater 26:1360–1365CrossRefGoogle Scholar
  27. 27.
    Alsammarraie FK, Lin M, Mustapha A, Lin H, Chen X, Chen Y, Wang H, Huang M (2018) Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chem 259:219–225CrossRefGoogle Scholar
  28. 28.
    Kaur M, Raj P, Singh N, Kuwar A, Kaur N (2018) Benzimidazole-based imine-linked copper complexes in food safety: selective detection of Cyproheptadine and Thiabendazole. ACS Sustain Chem Eng 6:3723–3732CrossRefGoogle Scholar
  29. 29.
    Kumar S, Goel P, Singh J (2017) Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sensor Actuat B-Chem 241:577–583CrossRefGoogle Scholar
  30. 30.
    Dong Y, Yang L, Zhang L (2017) Simultaneous electrochemical detection of Benzimidazole fungicides Carbendazim and Thiabendazole using a novel Nanohybrid material-modified electrode. J Agric Food Chem 65:727–736CrossRefGoogle Scholar
  31. 31.
    Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650CrossRefGoogle Scholar
  32. 32.
    Chang W, Liu S, Qileng A, Liu W, Liu Y (2018) In-situ synthesis of monodispersed au nanoparticles on eggshell membrane by the extract of Lagerstroemia speciosa leaves for the catalytic reduction of 4-nitrophenol. Mater Res Express 6CrossRefGoogle Scholar
  33. 33.
    Liu B, Zhou P, Liu X, Sun X, Li H, Lin M (2012) Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Tech 6:710–718CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food ScienceFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  2. 2.College of Chemical Engineering and Materials ScienceQuanzhou Normal UniversityQuanzhouPeople’s Republic of China
  3. 3.Food Science Program, Division of Food System & BioengineeringUniversity of MissouriColumbiaUSA

Personalised recommendations