Microchimica Acta

, 186:473 | Cite as

A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites

  • Lingling Xu
  • Zi Liu
  • Sheng Lei
  • Di Huang
  • Lina ZouEmail author
  • Baoxian YeEmail author
Original Paper


A sandwich-type electrochemical aptasensor is described for detecting the carcinoembryonic antigen (CEA) with high sensitivity and accuracy. Two kinds of nanomaterials are used. The first was obtained by modifying gold nanoparticles with reduced graphene oxide and hemin (Hemin-rGO-AuNPs). The second consists of horseradish peroxidase-modified organic-inorganic hybrid nanoflowers linked to gold nanoparticles to obtain an architecture of type HRP-Cu3(PO4)2-HNF-AuNPs). These serve as carriers for two aptamers (apt1 and apt2) against CEA. Simultaneously, they were used to catalyze the precipitation reaction between 4-chloro-1-naphthol(4-CN) and H2O2. A sandwich-type assay linked to enzyme inhibition amplification was established for electrochemical determination of CEA. Under optimal experimental conditions and by using differential pulse voltammetry, the response peak currents (best measured at −0.34 V vs. Ag/AgCl) increases linearly with the logarithm of the CEA concentration in the range between 100 fg mL−1 and 100 ng mL−1. The detection limit is as low as 29 fg mL−1.

Graphical abstract

Schematic representation of the sandwich-type electrochemical aptasensor based on signal inhibition amplification from biocatalytic precipitation reaction. (HRP-Cu3(PO4)2 hybrid nanoflowers: Horseradish Peroxidase-Cu3(PO4)2 hybrid nanoflowers; AuNPs: Gold Nanoparticles; Hemin-rGO-AuNPs: Hemin-Reduced Graphene Oxide-Gold Nanoparticles; BSA: Bovine Serum Albumin; CEA: Carcinoembryonic Antigen; CEAapt1: 5′-SH-(CH2)6-ATA CCA GCT TAT TCA ATT-3′; CEAapt2: 5′-NH2-(CH2)6-AGG GGG TGA AGG GAT ACC C-3′; GCE: Glassy carbon electrode; 4-CN: 4-Chloro-1-naphthol; DPV: Differential pulse voltammetry).


Organic-inorganic hybrid nanoflowers Horseradish peroxidase Aptamer Peroxidase-like mimic Hybrid materials Hemin 4-Chloro-1-naphthol Signal inhibition amplification Differential pulse voltammetry Tumor biomarker 



The authors are sincerely grateful for the financial support from the National Natural Science Foundation of China (Grant no. 21575130; U1504216) and Startup Research Fund of Zhengzhou University (Grant no. 1511316006).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3542_MOESM1_ESM.docx (821 kb)
ESM 1 (DOCX 820 kb)


  1. 1.
    Gold P (1965) Demonstration of tumor-specific antigens in human colonic Carcinomata by immunological tolerance and absorption techniques. J Exp Med 121(3):439–462CrossRefGoogle Scholar
  2. 2.
    Shousha S, Lyssiotis T, Godfrey VM, Scheuer PJ (1979) Carcinoembryonic antigen in breast-cancer tissue: a useful prognostic indicator. Brit Med J 1(6166):777–779CrossRefGoogle Scholar
  3. 3.
    Malkin A, Kellen JA, Lickrish GM, Bush RS (2015) Carcinoembryonic antigen (CEA) and other tumor markers in ovarian and cervical cancer. Cancer 42(S3):1452–1456CrossRefGoogle Scholar
  4. 4.
    Millo R, Radillo L, Mandruzzato GP (1988) Tumoral markers (CA 125--CEA) in the screening of ovarian cancer. Eur J Gynaecol Oncol 9(6):485–489PubMedGoogle Scholar
  5. 5.
    Ardakania MM, Ardakania ZT, Sahraeia N (2019) Seyed Mohammad Moshtaghioun fabrication of an ultrasensitive and selective electrochemical aptasensor to detect carcinoembryonic antigen by using a new nanocomposite. Biosens Bioelectron 129:1–6CrossRefGoogle Scholar
  6. 6.
    Huang J-Y, Zhao L, Lei W, Wen W, Wang YJ, Bao T, Xiong HY, Zhang XH, Wang SF (2018) A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens Bioelectron 99:28–33CrossRefGoogle Scholar
  7. 7.
    Nie G, Wang Y, Tang Y, Zhao D, Guo Q (2017) A graphene quantum dots based electrochemiluminescence immunosensor for carcinoembryonic antigen detection using poly(5-formylindole)/reduced graphene oxide nanocomposite. Biosens Bioelectron 101:123–128CrossRefGoogle Scholar
  8. 8.
    Wang D, Li Y, Lin Z, Qiu B, Guo L (2015)Surface-enhanced Electrochemiluminescence of Ru@SiO2 for ultrasensitive detection of carcinoembryonic antigen. Anal Chem 87(12):5966–5972CrossRefGoogle Scholar
  9. 9.
    Nie G, Tang Y, Zhang B, Wang Y, Guo Q (2018)Label-free photoelectrochemical immunosensing platform for detection of carcinoembryonic antigen through photoactive conducting poly(5-formylindole) nanocomposite. Biosens Bioelectron 116:60–66CrossRefGoogle Scholar
  10. 10.
    Li B, Lai GS, Zhang HL, Hu SL, Yu AM (2017) Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker. Anal Chim Acta 963:106–111CrossRefGoogle Scholar
  11. 11.
    Wu K, Chu C, Ma C, Yang H, Yan M, Ge S, Yu J, Song X (2015) Immunoassay for carcinoembryonic antigen based on the Zn2+-enhanced fluorescence of magnetic-fluorescent nanocomposites. Sensors Actuators B Chem 206:43–49CrossRefGoogle Scholar
  12. 12.
    Chen ZH, Wu YS, Chen MJ, Hou JY, Ren ZQ, Sun D, Liu TC (2013) A novel homogeneous time-resolved fluoroimmunoassay for carcinoembryonic antigen based on water-soluble quantum dots. J Fluoresc 23(4):649–657CrossRefGoogle Scholar
  13. 13.
    Wu YM, Li GP, Zou LN, Lei S, Yu Q, Ye BX (2018) Highly active DNAzyme-peptide hybrid structure coupled porous palladium for high-performance electrochemical aptasensing platform. Sensors Actuators B Chem 259:372–379CrossRefGoogle Scholar
  14. 14.
    Huang JY, Zhao L, Lei W, Wen W, Wang YJ, Bao T, Xiong HY, Zhang XH, Wang SF (2018) A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens Bioelectron 99:28–33CrossRefGoogle Scholar
  15. 15.
    Cheng H, Xu LL, Zhang HL, Yu AM, Lai GS (2016) Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker. Analyst 141(14):4381–4387CrossRefGoogle Scholar
  16. 16.
    Wu YM, Zou LN, Lei S, Yu Q, Ye BX (2017) Highly sensitive electrochemical thrombin aptasensor based on peptide-enhanced electrocatalysis of hemin/G-quadruplex and nanocomposite as nanocarrier. Biosens Bioelectron 97:317–324CrossRefGoogle Scholar
  17. 17.
    Zhang G, Liu Z, Fan L, Guo Y (2018) Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Microchim Acta 185(3):159CrossRefGoogle Scholar
  18. 18.
    Wang YH, Xia H, Huang KJ, Wu X, Ma YY, Deng R, Lu YF, Han ZW (2018) Ultrasensitive determination of thrombin by using an electrode modified with WSe2 and gold nanoparticles, aptamer-thrombin-aptamer sandwiching, redox cycling, and signal enhancement by alkaline phosphatase. Mirochim Acta 85(11):502CrossRefGoogle Scholar
  19. 19.
    Si ZZ, Xie B, Chen ZH, Tang C, Li T, Yang MH (2017) Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Microchim Acta 184:3215–3221CrossRefGoogle Scholar
  20. 20.
    Wang QL, Cui HF, Song XJ, Fan SF, Chen LL, Li MM, Li ZY (2018) A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen. Sensors Actuators B 260:48–54CrossRefGoogle Scholar
  21. 21.
    Ma C, Liu HY, Zhang LN, Lia H, Yan M, Song XR, Yu JH (2018) Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels and Ru(NH3)6 3+ electronic wires. Biosens Bioelectron 99:8–13CrossRefGoogle Scholar
  22. 22.
    Li WX, Shu D, Zhang DS, Ma ZF (2018)Multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of tumor marker. Sensors Actuators B Chem 262:50–56CrossRefGoogle Scholar
  23. 23.
    Du X, Kang T, Lu L et al (2017) An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/G-quadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb(II). Anal Methods 10:1039Google Scholar
  24. 24.
    Lai GS, Cheng H, Xin DH, Zhang HL, Yu AM (2016) Amplified inhibition of the electrochemical signal of ferrocene by enzyme-functionalized graphene oxide nanoprobe for ultrasensitive immunoassay. Anal Chim Acta 902:189–195CrossRefGoogle Scholar
  25. 25.
    Zhang KY, Lv SZ, Lin ZZ, Li MJ, Tang DP (2018)Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. Biosens Bioelectron 101:159–166CrossRefGoogle Scholar
  26. 26.
    Zhu D, Liu W, Zhao D, Hao Q, Li J, Huang J, Shi J, Chao J, Su S, Wang L (2017)Label-free electrochemical sensing platform for MicroRNA-21 detection using Thionine and Gold nanoparticles co-functionalized MoS2 Nanosheet. ACS Appl Mater Interfaces 9(41):35597–35603CrossRefGoogle Scholar
  27. 27.
    Fu YM, Huang D, Li C, Zou LN, Ye BX (2018) Graphene blended with SnO2 and Pd-Pt nanocages for sensitive non-enzymatic electrochemical detection of H2O2 released from living cells. Anal Chim Acta 1014:10–18CrossRefGoogle Scholar
  28. 28.
    Yu Q, Wu Y, Liu Z, Lei S, Li G, Ye B (2018) Novel electrochemical biosensor based on cationic peptide modified hemin/G-quadruples enhanced peroxidase-like activity. Biosens Bioelectron 107:178–183CrossRefGoogle Scholar
  29. 29.
    Lv X, Weng J (2013) Ternary composite of hemin, gold nanoparticles and graphene for highly efficient decomposition of hydrogen peroxide. Sci Rep 3:3285CrossRefGoogle Scholar
  30. 30.
    Yang Z, Qian J, Yang X, Jiang D, Du X, Wang K, Mao H, Wang K (2015) A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron 65:39–46CrossRefGoogle Scholar
  31. 31.
    Liu F, Tang J, Xu J, Shu Y, Xu Q, Wang H, Hu X (2016) Low potential detection of indole-3-acetic acid based on the peroxidase-like activity of hemin/reduced graphene oxide nanocomposite. Biosens Bioelectron 86:871–878CrossRefGoogle Scholar
  32. 32.
    Liu J, Cui M, Niu L, Zhou H, Zhang S (2016) Enhanced peroxidase-like properties of graphene-hemin-composite decorated with Au Nanoflowers as electrochemical aptamer biosensor for the detection of K562 leukemia Cancer cells. Chemistry 22(50):18001–18008CrossRefGoogle Scholar
  33. 33.
    Liu J, Cui M, Zhou H, Zhang S (2016) Efficient double-quenching of electrochemiluminescence from CdS:Eu QDs by hemin-graphene-Au nanorods ternary composite for ultrasensitive immunoassay. Sci Rep 6:30577CrossRefGoogle Scholar
  34. 34.
    Gu CJ, Kong FY, Chen ZD, Fan DH, Fang HL, Wang W (2016) Reduced graphene oxide-hemin-Au nanohybrids: facile one-pot synthesis and enhanced electrocatalytic activity towards the reduction of hydrogen peroxide. Biosens Bioelectron 78:300–307CrossRefGoogle Scholar
  35. 35.
    Yu Q, Wu YM, Liu Z, Lei S, Li GP, Ye BX (2018) Novel electrochemical biosensor based on cationic peptide modified hemin/G-quadruples enhanced peroxidase-like activity. Biosens Bioelectron 107:178–183CrossRefGoogle Scholar
  36. 36.
    Li J, Li X, Zhao Q, Jiang Z, Tadé M, Wang S, Liu S (2018)Polydopamine-assisted decoration of TiO2 nanotube arrays with enzyme to construct a novel photoelectrochemical sensing platform. Sensors Actuators B Chem 255:133–139CrossRefGoogle Scholar
  37. 37.
    Ge J, Lei J, Zare RN (2012)Protein-inorganic hybrid nanoflowers. Nature Nanotech 7(7):428–432CrossRefGoogle Scholar
  38. 38.
    Lin Z, Xiao Y, Yin Y, Hu W, Liu W, Yang H (2014) Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Appl Mater Interfaces 6(13):10775–10782CrossRefGoogle Scholar
  39. 39.
    Ye R, Zhu C, Song Y, Lu Q, Ge X, Yang X, Zhu MJ, Du D, Li H, Lin Y (2016) Bioinspired synthesis of all-in-oneorganic-inorganic hybrid Nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12(23):3094–3100CrossRefGoogle Scholar
  40. 40.
    Liu Y, Chen J, Du M, Wang X, Ji X, He Z (2017) The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron 92:68–73CrossRefGoogle Scholar
  41. 41.
    Kong W, Wu D, Hu N, Li N, Dai C, Chen X, Suo Y, Li G, Wu Y (2018) Robust hybrid enzyme nanoreactor mediated plasmonic sensing strategy for ultrasensitive screening of anti-diabetic drug. Biosens Bioelectron 99:653–659CrossRefGoogle Scholar
  42. 42.
    Ambrosi A, Castaneda MT, Killard AJ et al (2007)Double-codified Gold Nanolabels for enhanced Immunoanalysis. Anal Chem 79(14):5232–5240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations