Microchimica Acta

, 186:410 | Cite as

A triple signal amplification method for chemiluminescent detection of the cancer marker microRNA-21

  • Donghua ChenEmail author
  • Siming Wen
  • Rulin Peng
  • Qingsong Gong
  • Junjie FeiEmail author
  • Zhuo Fu
  • Chao Weng
  • Minna Liu
Original Paper


Mesoporous silica nanospheres (MSNs) are used in a triple signal amplification chemiluminescent (CL) assay for microRNA-21. It is based on (a) the synergistic amplification via loading and controlled-release of signal reagents by MSNs, (b) target recycling amplification, and (c) the enhancement effect of graphene oxide quantum dots (GOQD). CL is generated by the bis(2,4,6-trichlorophenyl) oxalate (TCPO) and H2O2 reaction in the presence of the fluorophore rhodamine B (RB). RB is firstly loaded into the pores of MSNs modified with amino groupsand coupled with ssDNA. Then, the pores are capped by GOQD. Upon the addition of microRNA-21 into the system, the designed ssDNA assumes a double stranded structure. With the aid of duplex-specific nuclease, the double strand structure is cleaved and the free microRNA-21 enters into the next cycling process to combine with other ssDNA forming double strand structures. After several cycling process, amounts of GOQDs departing from the surface of MSNs cause the opening of the pores of MSNs and the release of RB causes the CL of TCPO-H2O2 reaction system. Free GOQDs can lead to a further CL enhancement. By this method, even a low amount of microRNA-21 leads to a large number of released RB molecules and triggers high-intensity CL. The method was applied in an assay where the CL signal increases linearly with the logarithm of the microRNA-21 concentration in the range of 0.005–50 pmol L−1 and the detection limit is 1.7 fmol L−1 (at 3σ).

Graphical abstract

Schematic presentation of a triple signal amplification chemiluminescence (CL) analysis platform based on rodamine B (RB) loading and controlled release, target recycling amplification and graphene oxide quantum dots (GOQD) as the enhancer for analysis of microRNA-21 in human serum.


Mesoporous silica nanosphere Duplex-specific nuclease Graphene oxide quantum dots Rodamine B Liquid biopsy 



This work was supported by the Natural Science Foundation of Hunan Province (No. 2019JJ50623), the Scientific Research Fund of Hunan Provincial Education Department (No. 15C1312), and the Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.

Compliance with ethical standards

This study was approved by the Ethics Committee of Xiangtan University. Humans are not directly involved in the study. The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3537_MOESM1_ESM.doc (93 kb)
ESM 1 (DOC 93 kb)


  1. 1.
    Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113:6207–6233CrossRefGoogle Scholar
  2. 2.
    Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092CrossRefGoogle Scholar
  3. 3.
    Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866CrossRefGoogle Scholar
  4. 4.
    Sugatani T, Hruska KA (2009) Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 284:4667–4678CrossRefGoogle Scholar
  5. 5.
    Leidinger P, Keller A, Borries A, Reichrath J, Rass K, Jager SU, Lenhof HP, Meese E (2010) High-throughput miRNA profiling of human melanoma blood samples. BMC Cancer 10:262–267CrossRefGoogle Scholar
  6. 6.
    McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57:833–840CrossRefGoogle Scholar
  7. 7.
    Degliangeli F, Kshirsagar P, Brunetti V, Pompa PP, Fiammengo R (2014) Absolute and direct microRNA quantification using DNA−gold nanoparticle probes. J Am Chem Soc 136:2264–2267CrossRefGoogle Scholar
  8. 8.
    Wu X, Chai Y, Zhang P, Yuan R (2015) An electrochemical biosensor for sensitive detection of microRNA-155: combining target recycling with cascade catalysis for signal amplification. ACS Appl Mater Interfaces 7:713–720CrossRefGoogle Scholar
  9. 9.
    Li Y, Liang L, Zhang C (2013) Isothermally sensitive detection of serum circulating miRNAs for lung cancer diagnosis. Anal Chem 85:11174–11179CrossRefGoogle Scholar
  10. 10.
    Zhou L, Wang J, Chen Z, Li J, Wang T, Zhang Z, Xie G (2017) A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction. Microchim Acta 184:1305–1313CrossRefGoogle Scholar
  11. 11.
    Yang J, Tang M, Diao W, Cheng W, Zhang Y, Yan Y (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183:3061–3067CrossRefGoogle Scholar
  12. 12.
    Li Y, Pu Q, Li J, Zhou L, Tao Y, Li Y, Yu W, Xie G (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184:4323–4330CrossRefGoogle Scholar
  13. 13.
    Lu S, Wang S, Zhao J, Sun J, Yang X (2017) Fluorescence light-up biosensor for microRNA based on the distance-dependent photoinduced electron transfer. Anal Chem 89:8429–8436CrossRefGoogle Scholar
  14. 14.
    Zhen S, Xiao X, Li C, Huang C (2017) An enzyme-free DNA circuit-assisted graphene oxide enhanced fluorescence anisotropy assay for microRNA detection with improved sensitivity and selectivity. Anal Chem 89:8766–8771CrossRefGoogle Scholar
  15. 15.
    Xu S, Nie Y, Jiang L, Wang J, Xu G, Wang W, Luo X (2018) Polydopamine nanosphere/gold nanocluster (AuNC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related microRNAs with DNase-I-assisted target recycling amplification. Anal Chem 90:4039–4045CrossRefGoogle Scholar
  16. 16.
    Pei X, Yin H, Lai T, Zhang J, Liu F, Xu X, Li N (2018) Multiplexed detection of attomoles of nucleic acids using fluorescent nanoparticle counting platform. Anal Chem 90:1376–1383CrossRefGoogle Scholar
  17. 17.
    Zhao Q, Piao J, Peng W, Wang Y, Zhang B, Gong X, Chang J (2018) Simple and sensitive quantification of microRNAs via PS@au microspheres-based DNA probes and DSN-assisted signal amplification platform. ACS Appl Mater Interfaces 10:3324–3332CrossRefGoogle Scholar
  18. 18.
    Xia Y, Wang L, Li J, Chen X, Lan J, Yan A, Lei Y, Yang S, Yang H, Chen J (2018) A ratiometric fluorescent bioprobe based on carbon dots and acridone derivate for signal amplification detection exosomal microRNA. Anal Chem 90:8969–8976CrossRefGoogle Scholar
  19. 19.
    Qiu X, Liu X, Zhang W, Zhang H, Jiang T, Fan D, Luo Y (2015) Dynamic monitoring of microRNA−DNA hybridization using DNAase-triggered signal amplification. Anal Chem 87:6303–6310CrossRefGoogle Scholar
  20. 20.
    Sang Y, Xu Y, Xu L, Cheng W, Li X, Wu J (2017) Colorimetric and visual determination of microRNA via cycling signal amplification using T7 exonuclease. Microchim Acta 184:2465–2471CrossRefGoogle Scholar
  21. 21.
    Pero-Gascon R, Sanz-Nebot V, Berezovski MV, Benavente F (2018) Analysis of circulating microRNAs and their post-transcriptional modifications in cancer serum by on-line solid-phase extraction−capillary electrophoresis−mass spectrometry. Anal Chem 90:6618–6625CrossRefGoogle Scholar
  22. 22.
    Li X, Rout P, Xu R, Pan L, Tchounwou PB, Ma Y (2018) Quantification of microRNAs by coupling cyclic enzymatic amplification with microfluidic voltage-assisted liquid desorption electrospray ionization mass spectrometry. Anal Chem 90:13663–13669CrossRefGoogle Scholar
  23. 23.
    Liao Y, Huang R, Ma Z, Wu Y, Zhou X, Xing D (2014) Target-triggered enzyme-free amplification strategy for sensitive detection of microRNA in tumor cells and tissues. Anal Chem 86:4596–4604CrossRefGoogle Scholar
  24. 24.
    Feng Q, Wang M, Zhao X, Wang P (2018) Construction of a cytosine-adjusted electrochemiluminescence resonance energy transfer system for microRNA detection. Langmuir 34:10153–10162CrossRefGoogle Scholar
  25. 25.
    Feng Q, Shen Y, Li M, Zhang Z, Zhao W, Xu J, Chen H (2016) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)3 2+ for microRNA detection. Anal Chem 88:937–944CrossRefGoogle Scholar
  26. 26.
    Zhang P, Lin Z, Zhuo Y, Yuan R, Chai Y (2017) Dual microRNAs-fueled DNA nanogears: a case of regenerated strategy for multiple electrochemiluminescence detection of microRNAs with single luminophore. Anal Chem 89:1338–1345CrossRefGoogle Scholar
  27. 27.
    Zhang R, Chen A, Yu Y, Chai Y, Zhuo Y, Yuan R (2018) Electrochemiluminescent carbon dot-based determination of microRNA-21 by using a hemin/G-wire supramolecular nanostructure as co-reaction accelerator. Microchim Acta 185:432CrossRefGoogle Scholar
  28. 28.
    Chen A, Ma S, Zhuo Y, Chai Y, Yuan R (2016) In situ electrochemical generation of electrochemiluminescent silver naonoclusters on target-cycling synchronized rolling circle amplification platform for microRNA detection. Anal Chem 88:3203–3210CrossRefGoogle Scholar
  29. 29.
    Jian Y, Wang H, Lan F, Liang L, Ren N, Liu H, Ge S, Yu J (2018) Electrochemiluminescence based detection of microRNA by applying an amplification strategy and hg(II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium(II) tris(bipyridine). Microchim Acta 185:133CrossRefGoogle Scholar
  30. 30.
    Zheng Y, Chen H, Liu X, Jiang J, Luo Y, Shen G, Yu R (2008) An ultrasensitive chemiluminescence immunosensor for PSA based on the enzyme encapsulated liposome. Talanta 77:809–814CrossRefGoogle Scholar
  31. 31.
    Sheng Y, You Y, Cao Z, Liu L, Wu H (2018) Rapid and selective DNA-based detection of melamine using α-hemolysin nanopore. Analyst 143:2411–2415CrossRefGoogle Scholar
  32. 32.
    Chen Z, Tan Y, Xu K, Zhang L, Qiu B, Guo L, Lin Z, Chen G (2016) Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens Bioelectron 75:8–14CrossRefGoogle Scholar
  33. 33.
    Kurita H, Inaishi KI, Torii K (2008) Real-time direct observation of single-molecule DNA hydrolysis by exonuclease III. J Biomol Struct Dyn 25:473–480CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of ChemistryXiangtan UniversityXiangtanChina

Personalised recommendations