Microchimica Acta

, 186:419 | Cite as

A chitosan grafted mesoporous carbon aerogel for ultra-sensitive voltammetric determination of isoniazid

  • Chellakannu Rajkumar
  • Raja Nehru
  • Shen-Ming ChenEmail author
  • S. Arumugam
  • Qin-JinYeah
  • Raman SankarEmail author
Original Paper


A screen-printed carbon electrode (SPCE) was modified with chitosan (Chit) supported on carbon aerogel (CA) to obtain an electrochemical sensor for the tuberculosis drug isoniazid (INZ). The interconnected mesoporous structure of Chit/CA provides a large surface area (SBET = 461 m2 g−1) and good porosity (VTot = 0.69 cm3 g−1). Besides, the modified SPCE displayed enhanced electrocatalytic activity due to the presence of numerous active sites (such as >C=O, -NH-, -NH2, -OH). Figures of merit include (a) a typical working voltage of 0.28 V (vs. Ag/AgCl), (b) high sensitivity (8.09 μA μM−1 cm−2), (c) a wide linear response to INZ (0.01–115 μM) and (d) a low detection limit (8 nM). The modified electrode has successfully been applied to the determination of INZ in spiked serum and urine, and recoveries ranged from 97.8 to 99.8%.

Graphical abstract

Schematic illustration of preparation and applications of a nanocomposite consisting of chitosan (Chit; CS) supported on carbon aerogel (CA) for electrochemical detection of isoniazid.


Carbon aerogel Chitosan Tuberculosis drug Electrochemical sensor Serum and urine 



R.S. acknowledge the support provided by the Academia Sinica research program on Nanoscience and Nanotechnology under project number NM004. RS acknowledges the support by the Development of Novel Thermoelectric Materials for Sustainable Energy Academia Sinica in Taiwan AS-SS-106-01-1. The authors are grateful for the financial support (MOST106-2113-M-027-003 and MOST106-2221-E-182-021) from the Ministry of Science and Technology (MOST), Taiwan.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3533_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3146 kb)


  1. 1.
    Shahrokhian S, Ghalkhani M (2010) Glassy carbon electrodes modified with a film of nanodiamond–graphite/chitosan: application to the highly sensitive electrochemical determination of azathioprine. Electrochim Acta 55:3621–3627CrossRefGoogle Scholar
  2. 2.
    Becker C, Dressman JB, Amidon GL, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Barends DM, International Pharmaceutical Federation, Groupe BCS (2007) Biowaiver monographs for immediate release solid oral dosage forms: isoniazid. J Pharm Sci 96:522–531CrossRefGoogle Scholar
  3. 3.
    Yan X, Bo X, Guo L (2011) Electrochemical behaviors and determination of isoniazid at ordered mesoporous carbon modified electrode. Sensors Actuators B Chem 155:837–842CrossRefGoogle Scholar
  4. 4.
    Calleri E, De Lorenzi E, Furlanetto S et al (2002) Validation of a RP-LC method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin in a pharmaceutical formulation. J Pharm Biomed Anal 29:1089–1096CrossRefGoogle Scholar
  5. 5.
    Khuhawar M, Rind F (2002) Liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin from pharmaceutical preparations and blood. J Chromatogr B 766:357–363CrossRefGoogle Scholar
  6. 6.
    Goicoechea HC, Olivieri AC (1999) Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration. J Pharm Biomed Anal 20:681–686CrossRefGoogle Scholar
  7. 7.
    You T, Niu L, Gui JY, Dong S, Wang E (1999) Detection of hydrazine, methylhydrazine and isoniazid by capillary electrophoresis with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode. J Pharm Biomed Anal 19:231–237CrossRefGoogle Scholar
  8. 8.
    Lapa RA, Lima JL, Santos JL (2000) Fluorimetric determination of isoniazid by oxidation with cerium (IV) in a multicommutated flow system. Anal Chim Acta 419:17–23CrossRefGoogle Scholar
  9. 9.
    Safavi A, Karimi MA, Nezhad MRH (2003) Flow injection determination of isoniazid using N-bromosuccinimide-and N-chlorosuccinimide-luminol chemiluminescence systems. J Pharm Biomed Anal 30:1499–1506CrossRefGoogle Scholar
  10. 10.
    Demirkaya-Miloglu F, Oznuluer T, Ozdurak B et al (2016) Design and optimization of a new Voltammetric method for determination of isoniazid by using PEDOT modified gold electrode in Pharmaceuticls. Iranian J Pharm Res: IJPR 15:65Google Scholar
  11. 11.
    Cheemalapati S, Chen S-M, Ali MA, al-Hemaid FMA (2014) Enhanced electrocatalytic oxidation of isoniazid at electrochemically modified rhodium electrode for biological and pharmaceutical analysis. Colloids Surf B: Biointerfaces 121:444–450CrossRefGoogle Scholar
  12. 12.
    Jena BK, Raj CR (2010) Au nanoparticle decorated silicate network for the amperometric sensing of isoniazid. Talanta 80:1653–1656CrossRefGoogle Scholar
  13. 13.
    Szlósarczyk M, Piech R, Bator B et al (2012) Voltammetric determination of isoniazid using cyclic renewable mercury film silver based electrode. Pharm Anal Acta 3:1–5Google Scholar
  14. 14.
    Gowthaman N, Kesavan S, John SA (2016) Monitoring isoniazid level in human fluids in the presence of theophylline using gold@ platinum core@ shell nanoparticles modified glassy carbon electrode. Sensors Actuators B Chem 230:157–166CrossRefGoogle Scholar
  15. 15.
    Rastogi PK, Ganesan V, Azad UP (2016) Electrochemical determination of nanomolar levels of isoniazid in pharmaceutical formulation using silver nanoparticles decorated copolymer. Electrochim Acta 188:818–824CrossRefGoogle Scholar
  16. 16.
    Yang G, Wang C, Zhang R, Wang C, Qu Q, Hu X (2008) Poly (amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals. Bioelectrochemistry 73:37–42CrossRefGoogle Scholar
  17. 17.
    Satyanarayana M, Reddy KK, Gobi KV (2014) Multiwall carbon nanotube ensembled biopolymer electrode for selective determination of isoniazid in vitro. Anal Methods 6:3772–3778CrossRefGoogle Scholar
  18. 18.
    Guo Z, Wang Z-Y, Wang H-H, Huang GQ, Li MM (2015) Electrochemical sensor for isoniazid based on the glassy carbon electrode modified with reduced graphene oxide–au nanomaterials. Mater Sci Eng C 57:197–204CrossRefGoogle Scholar
  19. 19.
    Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydr Polym 83:653–658CrossRefGoogle Scholar
  20. 20.
    Shahrokhian S, Asadian E (2010) Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim Acta 55:666–672CrossRefGoogle Scholar
  21. 21.
    Shahrokhian S, Amiri M (2007) Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchim Acta 157:149–158CrossRefGoogle Scholar
  22. 22.
    Rajkumar C, Thirumalraj B, Chen S-M, Chen HA (2017) A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine. J Colloid Interface Sci 487:149–155CrossRefGoogle Scholar
  23. 23.
    An J, Bi Y-Y, Yang C-X, Hu FD, Wang CM (2013) Electrochemical study and application on rutin at chitosan/graphene films modified glassy carbon electrode. J Pharm Anal 3:102–108CrossRefGoogle Scholar
  24. 24.
    Chen C, Zhang Y, Zeng J, Zhang F, Zhou K, Bowen CR, Zhang D (2017) Aligned macroporous TiO2/chitosan/reduced graphene oxide (rGO) composites for photocatalytic applications. Appl Surf Sci 424:170–176CrossRefGoogle Scholar
  25. 25.
    Kim MK, Sundaram KS, Iyengar GA et al (2015) A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion. Chem Eng J 267:51–64CrossRefGoogle Scholar
  26. 26.
    Thirumalraj B, Rajkumar C, Chen S-M, Veerakumar P, Perumal P, Liu SB (2018) Carbon aerogel supported palladium-ruthenium nanoparticles for electrochemical sensing and catalytic reduction of food dye. Sensors Actuators B Chem 257:48–59CrossRefGoogle Scholar
  27. 27.
    Xu C, Hei Y, Liu J, Sun M, Sha T, Wang N, Hassan M, Bo X, Zhou M (2018) Synthesis of a threedimensional interconnected carbon nanorod aerogel from wax gourd for amperometric sensing. Microchimica Acta. S27 185(10):482CrossRefGoogle Scholar
  28. 28.
    Li R, Zhu H, Li Z, Liu J (2018) Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Microchim Acta 185:145CrossRefGoogle Scholar
  29. 29.
    Rajkumar C, Veerakumar P, Chen S-M, Thirumalraj B, Liu SB (2017) Facile and novel synthesis of palladium nanoparticles supported on a carbon aerogel for ultrasensitive electrochemical sensing of biomolecules. Nanoscale 9:6486–6496CrossRefGoogle Scholar
  30. 30.
    Balasubramanian P, Thirumalraj B, Chen S-M, Barathi PJJoTES (2017) Electrochemical determination of isoniazid using gallic acid supported reduced graphene oxide. J Electrochem Soc 164(7):H503–H508CrossRefGoogle Scholar
  31. 31.
    Almarzooqi FA, Al Ghaferi AA, Saadat I et al (2014) Application of capacitive deionisation in water desalination: a review. Desalination 342:3–15CrossRefGoogle Scholar
  32. 32.
    Hamedi M, Karabulut E, Marais A, Herland A, Nyström G, Wågberg L (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52:12038–12042CrossRefGoogle Scholar
  33. 33.
    Wei X, Wan S, Gao S (2016) Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy 28:206–215CrossRefGoogle Scholar
  34. 34.
    Zhu X, Xu J, Duan X, Lu L, Zhang K, Yu Y, Xing H, Gao Y, Dong L, Sun H, Yang T (2015) Controlled synthesis of partially reduced graphene oxide: enhance electrochemical determination of isoniazid with high sensitivity and stability. J Electroanal Chem 757:183–191CrossRefGoogle Scholar
  35. 35.
    Majidi MR, Jouyban A, Asadpour-Zeynali KJJoEC (2006) Voltammetric behavior and determination of isoniazid in pharmaceuticals by using overoxidized polypyrrole glassy carbon modified electrode. J Electroanal Chem 589:32–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsAcademia SinicaTaipeiTaiwan
  2. 2.Centre for Condensed Matter SciencesNational Taiwan UniversityTaipeiTaiwan
  3. 3.Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan
  4. 4.Center for High Pressure ResearchBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations