Advertisement

Microchimica Acta

, 186:418 | Cite as

UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature

  • Nirav JoshiEmail author
  • Luís F. da Silva
  • Flavio M. Shimizu
  • Valmor R. Mastelaro
  • Jean-Claude M’Peko
  • Liwei LinEmail author
  • Osvaldo N. OliveiraJrEmail author
Original Paper

Abstract

Two kinds of flexible ozone (O3) sensors were obtained by placing pristine ZnO nanorods and gold-modified ZnO nanorods (NRs) on a bi-axially oriented poly(ethylene terephthalate) substrate. The chemiresistive sensor is operated at typically 1 V at room temperature under the UV-light illumination. The ZnO nanorods were prepared via a hydrothermal route and have a highly crystalline wurtzite structure, with diameters ranging between 70 and 300 nm and a length varying from 1 to 3 μm. The ZnO NRs were then coated with a ca. 10 nm gold layer whose presence was confirmed with microscopy analysis. This sensor is found to be superior to detect ozone at a room temperature. Typical figures of merit include (a) a sensor response of 108 at 30 ppb ozone for gold-modified ZnO NRs, and (b) a linear range that extends from 30 to 570 ppb. The sensor is stable, reproducible and selective for O3 compared to other oxidizing and reducing gases. The enhanced performance induced by the modification of ZnO nanorods with thin layer of gold is attributed to the increased reaction kinetics compared to pristine ZnO NRs. The sensing mechanism is assumed to be based on the formation of a nano-Schottky type barrier junction at the interface between gold and ZnO.

Graphical abstract

Room temperature, flexible UV-enhanced gold modified ZnO nanorods can detect ppb levels of ozone.

Keywords

Zinc oxide nanorods Hydrothermal route Ozone gas Flexible sensor devices UV-activation 

Notes

Acknowledgements

This work had financial support from CNPq and FAPESP (2012/15543-7, 2013/14262-7, 2013/07296-2, 2017/12437-5, 2014/23546-1, 2016 / 23474-6) (Brazil). The authors are also thankful to Berkeley Sensor and Actuator Centre (BSAC). The authors are also grateful to Angelo L. Gobbi and Maria H. O. Piazzetta for the use of the Microfabrication Laboratory (LMF-20509) facilities to manufacture electrodes (LMF/LNNano-LNLS, Campinas, Brazil).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3532_MOESM1_ESM.doc (1.7 mb)
ESM 1 (DOC 1691 kb)

References

  1. 1.
    Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured materials for room-temperature gas sensors. Adv Mater 28(5):795–831.  https://doi.org/10.1002/adma.201503825 CrossRefPubMedGoogle Scholar
  2. 2.
    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185(4):213.  https://doi.org/10.1007/s00604-018-2750-5 CrossRefGoogle Scholar
  3. 3.
    Liu D, Lin L, Chen Q, Zhou H, Wu J (2017) Low power consumption gas sensor created from silicon nanowires/TiO2 Core–Shell heterojunctions. ACS Sensors 2(10):1491–1497.  https://doi.org/10.1021/acssensors.7b00459 CrossRefPubMedGoogle Scholar
  4. 4.
    Mishra YK, Adelung R (2018) ZnO tetrapod materials for functional applications. Mater Today 21(6):631–651.  https://doi.org/10.1016/j.mattod.2017.11.003 CrossRefGoogle Scholar
  5. 5.
    Chen T-Y, Chen H-I, Hsu C-S, Huang C-C, Wu J-S, Chou P-C, Liu W-C (2015) Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration. Sensors Actuators B Chem 221:491–498.  https://doi.org/10.1016/j.snb.2015.06.122 CrossRefGoogle Scholar
  6. 6.
    da Silva LF, M’Peko JC, Catto AC, Bernardini S, Mastelaro VR, Aguir K, Ribeiro C, Longo E (2017) UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sensors Actuators B Chem 240:573–579.  https://doi.org/10.1016/j.snb.2016.08.158 CrossRefGoogle Scholar
  7. 7.
    Xu F, H-P HO (2017) Light-activated metal oxide gas sensors: a review. Micromachines 8(11):333CrossRefGoogle Scholar
  8. 8.
    Joshi N, Shimizu FM, Awan IT, Peko JM, Mastelaro VR, Oliveira ON, Silva LFd (2016) Ozone sensing properties of nickel phthalocyanine:ZnO nanorod heterostructures. In: 2016 IEEE SENSORS, 30 Oct.-3 Nov. 2016. pp 1–3.  https://doi.org/10.1109/ICSENS.2016.7808407
  9. 9.
    Kathiravan D, Huang B-R, Saravanan A (2017) Multifunctional sustainable materials: the role of carbon existing protein in the enhanced gas and UV sensing performances of ZnO-based biofilms. J Mater Chem C 5(21):5239–5247.  https://doi.org/10.1039/C7TC01305A CrossRefGoogle Scholar
  10. 10.
    Joshi N, da Silva LF, Jadhav HS, Shimizu FM, Suman PH, M’Peko J-C, Orlandi MO, Seo JG, Mastelaro VR, Oliveira ON (2018) Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sensors Actuators B Chem 257:906–915.  https://doi.org/10.1016/j.snb.2017.11.041 CrossRefGoogle Scholar
  11. 11.
    Joshi N, da Silva LF, Jadhav H, M'Peko J-C, Millan Torres BB, Aguir K, Mastelaro VR, Oliveira ON (2016) One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv 6(95):92655–92662.  https://doi.org/10.1039/C6RA18384K CrossRefGoogle Scholar
  12. 12.
    Joshi N, Saxena V, Singh A, Koiry SP, Debnath AK, Chehimi MM, Aswal DK, Gupta SK (2014) Flexible H2S sensor based on gold modified polycarbazole films. Sensors Actuators B Chem 200:227–234.  https://doi.org/10.1016/j.snb.2014.04.041 CrossRefGoogle Scholar
  13. 13.
    Kumar A, Joshi N, Samanta S, Singh A, Debnath AK, Chauhan AK, Roy M, Prasad R, Roy K, Chehimi MM, Aswal DK, Gupta SK (2015) Room temperature detection of H2S by flexible gold–cobalt phthalocyanine heterojunction thin films. Sensors Actuators B Chem 206:653–662.  https://doi.org/10.1016/j.snb.2014.09.074 CrossRefGoogle Scholar
  14. 14.
    Guo J, Zhang J, Zhu M, Ju D, Xu H, Cao B (2014) High-performance gas sensor based on ZnO nanowires functionalized by au nanoparticles. Sensors Actuators B Chem 199:339–345.  https://doi.org/10.1016/j.snb.2014.04.010 CrossRefGoogle Scholar
  15. 15.
    Ramgir NS, Kaur M, Sharma PK, Datta N, Kailasaganapathi S, Bhattacharya S, Debnath AK, Aswal DK, Gupta SK (2013) Ethanol sensing properties of pure and au modified ZnO nanowires. Sensors Actuators B Chem 187:313–318.  https://doi.org/10.1016/j.snb.2012.11.079 CrossRefGoogle Scholar
  16. 16.
    Hosseini ZS, Mortezaali A, Iraji zad A, Fardindoost S (2015) Sensitive and selective room temperature H2S gas sensor based on au sensitized vertical ZnO nanorods with flower-like structures. J Alloys Compd 628:222–229.  https://doi.org/10.1016/j.jallcom.2014.12.163 CrossRefGoogle Scholar
  17. 17.
    Liu W, Tang X, Tang Z, Chu F, Zeng T, Tang N (2014) Role of oxygen defects in magnetic property of cu doped ZnO. J Alloys Compd 615:740–744.  https://doi.org/10.1016/j.jallcom.2014.07.033 CrossRefGoogle Scholar
  18. 18.
    Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2008) Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92(10):103105.  https://doi.org/10.1063/1.2894187 CrossRefGoogle Scholar
  19. 19.
    Wang A-Q, Liu J-H, Lin SD, Lin T-S, Mou C-Y (2005) A novel efficient au–ag alloy catalyst system: preparation, activity, and characterization. J Catal 233(1):186–197.  https://doi.org/10.1016/j.jcat.2005.04.028 CrossRefGoogle Scholar
  20. 20.
    Catto AC, da Silva LF, Ribeiro C, Bernardini S, Aguir K, Longo E, Mastelaro VR (2015) An easy method of preparing ozone gas sensors based on ZnO nanorods. RSC Adv 5(25):19528–19533.  https://doi.org/10.1039/C5RA00581G CrossRefGoogle Scholar
  21. 21.
    Dhahri R, Hjiri M, Mir LE, Bonavita A, Iannazzo D, Latino M, Donato N, Leonardi SG, Neri G (2016) Gas sensing properties of Al-doped ZnO for UV-activated CO detection. J Phys D Appl Phys 49(13):135502CrossRefGoogle Scholar
  22. 22.
    Yayu Z, Xuan L, Ping D, Yuxin N, Yan Z, Lili X, Xinyu X (2014) Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature. Nanotechnology 25(11):115502CrossRefGoogle Scholar
  23. 23.
    Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sensors Actuators B Chem 140(1):319–336.  https://doi.org/10.1016/j.snb.2009.04.026 CrossRefGoogle Scholar
  24. 24.
    Woo H-S, Na CW, Lee J-H (2016) Design of Highly Selective gas Sensors via physicochemical modification of oxide nanowires: overview. Sensors (Basel, Switzerland) 16(9):1531.  https://doi.org/10.3390/s16091531 CrossRefGoogle Scholar
  25. 25.
    Gao Y, Kong Q, Zhang J, Xi G (2017) General fabrication and enhanced VOC gas-sensing properties of hierarchically porous metal oxides. RSC Adv 7(57):35897–35904.  https://doi.org/10.1039/C7RA06808E CrossRefGoogle Scholar
  26. 26.
    Li Y-X, Guo Z, Su Y, Jin X-B, Tang X-H, Huang J-R, Huang X-J, Li M-Q, Liu J-H (2017) Hierarchical morphology-dependent gas-sensing performances of three-dimensional SnO2 nanostructures. ACS Sensors 2(1):102–110.  https://doi.org/10.1021/acssensors.6b00597 CrossRefPubMedGoogle Scholar
  27. 27.
    Mekki A, Joshi N, Singh A, Salmi Z, Jha P, Decorse P, Lau-Truong S, Mahmoud R, Chehimi MM, Aswal DK, Gupta SK (2014) H2S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates. Org Electron 15(1):71–81.  https://doi.org/10.1016/j.orgel.2013.10.012 CrossRefGoogle Scholar
  28. 28.
    Singh A, Salmi Z, Joshi N, Jha P, Kumar A, Lecoq H, Lau S, Chehimi MM, Aswal DK, Gupta SK (2013) Photo-induced synthesis of polypyrrole-silver nanocomposite films on N-(3-trimethoxysilylpropyl)pyrrole-modified biaxially oriented polyethylene terephthalate flexible substrates. RSC Adv 3(16):5506–5523.  https://doi.org/10.1039/C3RA22981E CrossRefGoogle Scholar
  29. 29.
    Ghoorchian A, Alizadeh N (2018) Chemiresistor gas sensor based on sulfonated dye-doped modified conducting polypyrrole film for high sensitive detection of 2,4,6-trinitrotoluene in air. Sensors Actuators B Chem 255:826–835.  https://doi.org/10.1016/j.snb.2017.08.093 CrossRefGoogle Scholar
  30. 30.
    Ponzoni A, Baratto C, Cattabiani N, Falasconi M, Galstyan V, Nunez-Carmona E, Rigoni F, Sberveglieri V, Zambotti G, Zappa D (2017) Metal oxide gas sensors, a survey of selectivity issues addressed at the SENSOR lab, Brescia (Italy). Sensors (Basel, Switzerland) 17(4):714.  https://doi.org/10.3390/s17040714 CrossRefGoogle Scholar
  31. 31.
    Liu C, Kuang Q, Xie Z, Zheng L (2015) The effect of noble metal (au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra. CrystEngComm 17(33):6308–6313.  https://doi.org/10.1039/C5CE01162K CrossRefGoogle Scholar
  32. 32.
    Rai P, Majhi SM, Yu Y-T, Lee J-H (2015) Noble metal@metal oxide semiconductor core@shell nano-architectures as a new platform for gas sensor applications. RSC Adv 5(93):76229–76248.  https://doi.org/10.1039/C5RA14322E CrossRefGoogle Scholar
  33. 33.
    Ramgir NS, Sharma PK, Datta N, Kaur M, Debnath AK, Aswal DK, Gupta SK (2013) Room temperature H2S sensor based on au modified ZnO nanowires. Sensors Actuators B Chem 186:718–726.  https://doi.org/10.1016/j.snb.2013.06.070 CrossRefGoogle Scholar
  34. 34.
    Basu S, Basu PK (2009) Nanocrystalline metal oxides for methane sensors: role of Noble metals. Journal of Sensors 2009:1–20.  https://doi.org/10.1155/2009/861968 CrossRefGoogle Scholar
  35. 35.
    Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139(1):1–23.  https://doi.org/10.1016/j.mseb.2007.01.044 CrossRefGoogle Scholar
  36. 36.
    Cui J, Shi L, Xie T, Wang D, Lin Y (2016) UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sensors Actuators B Chem 227:220–226.  https://doi.org/10.1016/j.snb.2015.12.010 CrossRefGoogle Scholar
  37. 37.
    Wongrat E, Chanlek N, Chueaiarrom C, Samransuksamer B, Hongsith N, Choopun S (2016) Low temperature ethanol response enhancement of ZnO nanostructures sensor decorated with gold nanoparticles exposed to UV illumination. Sensors Actuators A Phys 251:188–197.  https://doi.org/10.1016/j.sna.2016.10.022 CrossRefGoogle Scholar
  38. 38.
    Geng X, Zhang C, Debliquy M (2016) Cadmium sulfide activated zinc oxide coatings deposited by liquid plasma spray for room temperature nitrogen dioxide detection under visible light illumination. Ceram Int 42(4):4845–4852.  https://doi.org/10.1016/j.ceramint.2015.11.170 CrossRefGoogle Scholar
  39. 39.
    Chinh ND, Quang ND, Lee H, Thi Hien T, Hieu NM, Kim D, Kim C, Kim D (2016) NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures. Sci Rep 6:35066.  https://doi.org/10.1038/srep35066 https://www.nature.com/articles/srep35066#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cui J, Wang D, Xie T, Lin Y (2013) Study on photoelectric gas-sensing property and photogenerated carrier behavior of Ag–ZnO at the room temperature. Sensors Actuators B Chem 186:165–171.  https://doi.org/10.1016/j.snb.2013.05.088 CrossRefGoogle Scholar
  41. 41.
    Ahn H, Wang Y, Hyun Jee S, Park M, Yoon YS, Kim D-J (2011) Enhanced UV activation of electrochemically doped Ni in ZnO nanorods for room temperature acetone sensing. Chem Phys Lett 511(4):331–335.  https://doi.org/10.1016/j.cplett.2011.06.045 CrossRefGoogle Scholar
  42. 42.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B Chem 121(1):18–35.  https://doi.org/10.1016/j.snb.2006.09.047 CrossRefGoogle Scholar
  43. 43.
    Cao C, Hu C, Wang X, Wang S, Tian Y, Zhang H (2011) UV sensor based on TiO2 nanorod arrays on FTO thin film. Sensors Actuators B Chem 156(1):114–119.  https://doi.org/10.1016/j.snb.2011.03.080 CrossRefGoogle Scholar
  44. 44.
    Fan S-W, Srivastava AK, Dravid VP (2009) UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl Phys Lett 95(14):142106.  https://doi.org/10.1063/1.3243458 CrossRefGoogle Scholar
  45. 45.
    Li X, Zhang Y, Ren X (2009) Effects of localized surface plasmons on the photoluminescence properties of au-coated ZnO films. Opt Express 17(11):8735–8740.  https://doi.org/10.1364/OE.17.008735 CrossRefPubMedGoogle Scholar
  46. 46.
    Xuming Z, Yu Lim C, Ru-Shi L, Din Ping T (2013) Plasmonic photocatalysis. Rep Prog Phys 76(4):046401.  https://doi.org/10.1088/0034-4885/76/4/046401 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.São Carlos Institute of PhysicsUniversity of São PauloSão PauloBrazil
  2. 2.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  3. 3.Department of PhysicsFederal University of São CarlosSão CarlosBrazil
  4. 4.Brazilian Nanotechnology National Laboratory (LNNano)Brazilian Center for Research in Energy and Materials (CNPEM)São PauloBrazil

Personalised recommendations