Advertisement

Microchimica Acta

, 186:411 | Cite as

Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification

  • Verónica Serafín
  • Alejandro Valverde
  • María Garranzo-Asensio
  • Rodrigo Barderas
  • Susana CampuzanoEmail author
  • Paloma Yáñez-SedeñoEmail author
  • José M. Pingarrón
Original Paper
  • 34 Downloads

Abstract

This paper describes a dual electrochemical immunoassay for the simultaneous determination of IL-13Rα2 and CDH-17, two biomarkers of emerging relevance in metastatic processes. The sandwich assay uses a screen-printed dual carbon electrode that was electrochemically grafted with p-aminobenzoic acid to allow the covalent immobilization of capture antibodies. A hybrid composed of graphene quantum dots (GQDs) and multiwalled carbon nanotubes (MWCNTs) act as nanocarriers for the detection antibodies and horseradish peroxidase. The use of this hybrid material considerably improves the assay (in comparison to the use of MWCNTs) due to the peroxidase mimicking activity of the GQDs. The method works at a low working potential (0.20 V vs. Ag pseudo-reference electrode) and thus is not readily interfered by unknown electroactive species. The dual immunoassay allows for the selective determination of both biomarkers with LOD values of 1.4 (IL-13sRα2) and 0.03 ng mL−1 (CDH-17). The simultaneous determination of IL-13Rα2 and CDH-17 was accomplished in lysates from breast and colorectal cancer cells with different metastatic potential, and in paraffin-embedded tumor tissues extracts from patients diagnosed with colorectal cancer at different stages. The applicability to discriminate the metastatic potential even in intact cells through the detection of both extracellular receptors has been demonstrated also. The assay can be performed within 3 h, requires small sample amounts (0.5 μg), and has a simple protocol.

Graphical abstract

Dual amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 in human colorectal cancer cells and tissues by using grafted screen-printed electrodes and composites of quantum dots and carbon nanotubes as nanocarriers.

Keywords

Dual immunosensor Metastasis-related biomarkers Graphene quantum dots Signal amplification Electrochemical immunosensor Colorectal cancer Paraffin-embedded tissues Peroxidase mimic 

Notes

Acknowledgements

The financial support of the Spanish Ministerio de Economía y Competitividad, Grants RTI2018-096135-B-I00 and CTQ2015-64402-C2-1-R, and the TRANSNANOAVANSENS-CM Program from the Comunidad de Madrid (Grant P2018/NMT-4349), are gratefully acknowledged. R.B. acknowledges the financial support of the PI17CIII/00045 Grant from the AES-ISCIII program. M.G.-A. was supported by a contract of the Programa Operativo de Empleo Juvenil y la Iniciativa de Empleo Juvenil (YEI) with the participation of the Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid y del Fondo Social Europeo.

Compliance with ethical standards

The author(s) declare that they have no competing interests. This study and all the experimental protocols used were performed according to the guidelines and regulations and approved by the University Complutense of Madrid. The Institutional Ethical Review Board of the Hospital La Paz (Madrid, Spain), that supplied us with the clinical samples, approved this study and all patients given their written informed consent.

Supplementary material

604_2019_3531_MOESM1_ESM.doc (376 kb)
ESM 1 (DOC 376 kb)

References

  1. 1.
    Wong Kee Song LM, Wilson BC (2005) Endoscopic detection of early upper GI cancers. Best Pract Res Clin Gastroenterol 19:833–856CrossRefGoogle Scholar
  2. 2.
    Bernhard OK, Greening DW, Barnes TW, Ji H, Simpson RJ (2013) Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma. Biochim Biophys Acta 1834:2372–2379CrossRefGoogle Scholar
  3. 3.
    Habermann JK, Bader FG, Franke C, Zimmermann K, Gemoll T, Fritzsche B, Ried T, Auer G, Bruch HP, Roblick UJ (2008) From the genome to the proteome--biomarkers in colorectal cancer. Langenbeck's Arch Surg 393:93–104CrossRefGoogle Scholar
  4. 4.
    Steele RJC (2006) Modern challenges in colorectal cancer. Surgeon 4:285–291CrossRefGoogle Scholar
  5. 5.
    Duffy MJ (2001) Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem 47:624–630PubMedGoogle Scholar
  6. 6.
    Stiksma J, Grootendorst DC, van der Linden PW (2014) CA 19-9 as a marker in addition to CEA to monitor colorectal cancer. Clin Colorectal Cancer 13:239–244CrossRefGoogle Scholar
  7. 7.
    Groblewska M, Mroczko B, Gryko M, Pryczynicz A, Guzińska-Ustymowicz K, Kędra B, Kemona A, Szmitkowski M (2014) Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients. Tumour Biol 35:3793–3802CrossRefGoogle Scholar
  8. 8.
    Martínez-García G, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2016) Multiplexed electrochemical immunosensing of obesity-related hormones at grafted graphene-modified electrodes. Electrochim Acta 202:209–215CrossRefGoogle Scholar
  9. 9.
    Sánchez-Tirado E, Salvo C, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM (2017) Electrochemical immunosensor for simultaneous determination of interleukin-1 beta and tumor necrosis factor alpha in serum and saliva using dual screen printed electrodes modified with functionalized double-walled carbon nanotubes. Anal Chim Acta 959:66–73CrossRefGoogle Scholar
  10. 10.
    Suzuki A, Leland P, Joshi BH, Puri RK (2015) Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 75:79–88CrossRefGoogle Scholar
  11. 11.
    Valverde A, Povedano E, Ruiz-Valdepeñas Montiel V, Yáñez-Sedeño P, Garranzo-Asensio M, Barderas R, Campuzano S, Pingarrón JM (2018) Electrochemical immunosensor for IL-13 receptor α2 determination and discrimination of metastatic colon cancer cells. Biosens Bioelectron 117:766–772CrossRefGoogle Scholar
  12. 12.
    Barderas R, Bartolomé RA, Fernández-Aceñero MJ, Torres S, Casal JI (2012) High expression of IL-13 receptor α2 in colorectal cancer is associated with invasion, liver metastasis, and poor prognosis. Cancer Res 72:2780–2790CrossRefGoogle Scholar
  13. 13.
    Gessner R, Tauber R (2000) Intestinal cell adhesion molecules. Liver-intestine cadherin. Ann N Y Acad Sci 915:136–143CrossRefGoogle Scholar
  14. 14.
    Berndorff D, Gessner R, Kreft B, Schnoy N, Lajous-Petter AM, Loch N, Reutter W, Hortsch M, Tauber R (1994) Liver-intestine cadherin: molecular cloning and characterization of a novel Ca(2+)-dependent cell adhesion molecule expressed in liver and intestine. J Cell Biol 125:1353–1369CrossRefGoogle Scholar
  15. 15.
    Hinoi T, Lucas PC, Kuick R, Hanash S, Cho KR, Fearon ER (2002) CDX2 regulates liver intestine–cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology 123:1565–1577CrossRefGoogle Scholar
  16. 16.
    Panarelli NC, Yantiss RK, Yeh MM, Liu Y, Chen YT (2012) Tissue-specific cadherin CDH17 is a useful marker of gastrointestinal adenocarcinomas with higher sensitivity than CDX2. Am J Clin Pathol 138:211–222CrossRefGoogle Scholar
  17. 17.
    Takamura M, Ichida T, Matsuda Y, Kobayashi M, Yamagiwa S, Genda T, Shioji K, Hashimoto S, Nomoto M, Hatakeyama K, Ajioka Y, Sakamoto M, Hirohashi S, Aoyagi Y (2004) Reduced expression of liver-intestine cadherin is associated with progression and lymph node metastasis of human colorectal carcinoma. Cancer Lett 212:253–259CrossRefGoogle Scholar
  18. 18.
    Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST (2005) Alternative mRNA splicing of liver intestine-cadherin in hepatocellular carcinoma. Clin Cancer Res 11:483–489PubMedGoogle Scholar
  19. 19.
    Tian MM, Zhao AL, Li ZW, Li JY (2007) Phenotypic classification of gastric signet ring cell carcinoma and its relationship with clinicopathologic parameters and prognosis. World J Gastroenterol 13:3189–3198CrossRefGoogle Scholar
  20. 20.
    Ge J, Chen Z, Wu S, Yuan W, Hu B (2008) A clinicopathological study on the expression of cadherin-17 and caudal-related homeobox transcription factor (CDX2) in human gastric carcinoma. Clin Oncol 20:275–283CrossRefGoogle Scholar
  21. 21.
    Takamura M, Sakamoto M, Ino Y, Shimamura T, Ichida T, Asakura H, Hirohashi S (2003) Expression of liver-intestine cadherin and its possible interaction with galectin-3 in ductal adenocarcinoma of the pancreas. Cancer Sci 94:425–430CrossRefGoogle Scholar
  22. 22.
    Valverde A, Povedano E, Ruiz-Valdepeñas Montiel V, Yáñez-Sedeño P, Garranzo-Asensio M, Rodríguez N, Domínguez G, Barderas R, Campuzano S, Pingarrón JM (2018) Determination of cadherin-17 in tumor tissues of different metastatic grade using a single incubation-step amperometric immunosensor. Anal Chem 90:11161–11167CrossRefGoogle Scholar
  23. 23.
    Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2017) Carbon nanostructures for tagging in electrochemical biosensing: a review. C 3:3.  https://doi.org/10.3390/c3010003 CrossRefGoogle Scholar
  24. 24.
    Sánchez-Tirado E, Arellano LM, González-Cortés A, Yáñez-Sedeño P, Langa F, Pingarrón JM (2017) Viologen-functionalized single-walled carbon nanotubes as carrier nanotags for electrochemical immunosensing. Application to TGF-β1 cytokine. Biosens Bioelectron 98:240–247CrossRefGoogle Scholar
  25. 25.
    Sánchez-Tirado E, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2018) Magnetic multiwalled carbon nanotubes as nanocarrier tags for sensitive determination of fetuin in saliva. Biosens Bioelectron 113:88–94CrossRefGoogle Scholar
  26. 26.
    Mollarasouli F, Serafín V, Campuzano S, Yáñez-Sedeño P, Pingarrón JM, Asadpour-Zeynali K (2018) Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Anal Chim Acta 1011:28–34CrossRefGoogle Scholar
  27. 27.
    Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H (2014) DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron 60:64–70CrossRefGoogle Scholar
  28. 28.
    Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C (2016) Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protocols 11:1244–1263CrossRefGoogle Scholar
  29. 29.
    Serafín V, Valverde A, Martínez-García G, Martínez-Periñán E, Comba F, Garranzo-Asensio M, Barderas R, Yáñez-Sedeño P, Campuzano S, Pingarrón JM (2019) Graphene quantum dots-functionalized multi-walled carbon nanotubes as nanocarriers in electrochemical immunosensing. Determination of IL-13 receptor α2 in colorectal cells and tumor tissues with different metastatic potential. Sensors Actuators B Chem 284:711–722CrossRefGoogle Scholar
  30. 30.
    Serafín V, Torrente-Rodríguez RM, González-Cortés A, García de Frutos P, Sabaté M, Campuzano S, Yáñez-Sedeño P, Pingarrón JM (2018) An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry. Talanta 179:131–138CrossRefGoogle Scholar
  31. 31.
    Uygun ZO, Uygun HDE (2014) A short footnote: circuit design for faradaic impedimetric sensors and biosensors. Sensors Actuator B Chem 202:448–453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Química Analítica, Facultad de Ciencias QuímicasUniversidad Complutense de MadridMadridSpain
  2. 2.UFIEC, Instituto de Salud Carlos IIIMajadahondaSpain
  3. 3.IMDEA NanoscienceCiudad Universitaria de CantoblancoMadridSpain

Personalised recommendations