Advertisement

Microchimica Acta

, 186:407 | Cite as

Preparation of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid

  • Xia Chen
  • Dandan Li
  • Weina Ma
  • Tianfeng Yang
  • Yanmin Zhang
  • Dongdong ZhangEmail author
Original Paper
  • 39 Downloads

Abstract

This paper presents a method for the preparation of a graphene-based hybrid composite film by electrodeposition of reduced graphene oxide and overoxidized electropolymerized polypyrrole onto a glassy carbon electrode (GCE) using cyclic voltammetry. The morphology of the hybrid composite film was characterized by scanning electron microscopy. The electrochemical activity of the modified GCE was studied by cyclic voltammetry using the negatively charged redox probe Fe(CN)63− and the positively charged redox probe Ru(NH3)63+. The modified GCE displays excellent electrocatalytic activity for dopamine (DA) and uric acid (UA), but electrostatically repulses ascorbate anion under physiological pH conditions. The voltammetric response to DA is linear in the 2.0 μM to 160 μM concentration range even in the presence of 1.0 mM ascorbic acid and 0.1 mM of UA. The detection limit is 0.5 μM. The amperometric response to DA (best measured at 0.22 V vs. Ag/AgCl) extends from 0.4 μM to 517 μM and has a 0.2 μM detection limit.

Graphical abstract

Schematic presentation of the fabrication of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid.

Keywords

Graphene Polypyrrole Hybrid composite Nanocomposite Modified electrode Neurotransmitter Electrochemical sensor 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21305106) and Shaanxi Province Natural Science Foundation of China (No.2019JM-469).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3518_MOESM1_ESM.doc (562 kb)
ESM 1 (DOC 562 kb)

References

  1. 1.
    Janezic S, Threlfell S, Dodson PD, Dowie MJ, Taylor TN, Potgieter D, Parkkinen L, Senior SL, Anwar S, Ryan B, Deltheil T, Kosillo P, Cioroch M, Wagner K, Ansorge O, Bannerman DM, Bolam JP, Magill PJ, Cragg SJ, Wade-Martins R (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci U S A 110:E4016–E4025CrossRefGoogle Scholar
  2. 2.
    Bucher ES, Wightman RM (2015) Electrochemical analysis of neurotransmitters. Annu Rev Anal Chem 8:239–261CrossRefGoogle Scholar
  3. 3.
    Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L (2017) In vivo analysis with electrochemical sensors and biosensors. Anal Chem 89:300–313CrossRefGoogle Scholar
  4. 4.
    Zhang D, Li L, Ma W, Chen X, Zhang Y (2017) Electrodeposited reduced graphene oxide incorporating polymerization of l-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mat Sci Eng C-Mater 70:241–249CrossRefGoogle Scholar
  5. 5.
    Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin AAM, Şen F (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine and ascorbic acid. Mat Sci Eng C-Mater 99:284–254CrossRefGoogle Scholar
  6. 6.
    Tavakolian E, Tashkhourian J (2018) Sonication-assisted preparation of a nanocomposite consisting of reduced graphene oxide and CdSe quantum dots, and its application to simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 185:456–463CrossRefGoogle Scholar
  7. 7.
    Li Y, Jiang Y, Song Y, Li Y, Li S (2018) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta 185:382–391CrossRefGoogle Scholar
  8. 8.
    Kepinska D, Blanchard GJ, Krysinski P, Stolarski J, Kijewska K, Mazur M (2011) Pyrene-loaded polypyrrole microvessels. Langmuir 27:12720–12729CrossRefGoogle Scholar
  9. 9.
    Schuhmann W (1995) Electron-transfer pathways in amperometric biosensors. Ferrocenemodified enzymes entrapped in conducting-polymer layers. Biosens Bioelectron 10:181–193CrossRefGoogle Scholar
  10. 10.
    Kim J-H, Sharma AK, Lee Y-S (2006) Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater Lett 60:1697–1701CrossRefGoogle Scholar
  11. 11.
    Diaz AF, Kanazaw KK (1979) Electrochemical polymerization of pyrrole. Chem Commun 14:635–636CrossRefGoogle Scholar
  12. 12.
    Beck F, Braun P, Oberst M (1987) Organic electrochemistry in the solid state-overoxidation of polypyrrole. Ber Bunsenges Phys Chem 91:967–974CrossRefGoogle Scholar
  13. 13.
    Witkowski A, Freund MS, Brajter-Toth A (1991) Effect of electrode substrate on the morphology and selectivity of overoxidized polypyrrole films. Anal Chem 63:622–626CrossRefGoogle Scholar
  14. 14.
    Witkowski A, Brajter-Toth A (1992) Overoxidized polypyrrole films: a model for the design of permselective electrodes. Anal Chem 64:635–641CrossRefGoogle Scholar
  15. 15.
    Freund M, Eodalbhai L, Brajter-Toth A (1991) Anion excluding polypyrrole films. Talanta 38:95–99CrossRefGoogle Scholar
  16. 16.
    Pihel K, Walker QD, Wightman RM (1996) Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry. Anal Chem 68:2084–2089CrossRefGoogle Scholar
  17. 17.
    Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438CrossRefGoogle Scholar
  18. 18.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  19. 19.
    Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188CrossRefGoogle Scholar
  20. 20.
    Su Z, Xu X, Cheng Y, Tan Y, Xiao L, Tang D, Jiang H, Qin X, Wang H (2019) Chemical pre-reduction and electro-reduction guided preparation of a porous graphene bionanocomposite for indole-3-acetic acid detection. Nanoscale 11:962–967CrossRefGoogle Scholar
  21. 21.
    Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137CrossRefGoogle Scholar
  22. 22.
    Zhang D, Ouyang X, Ma W, Li L, Zhang Y (2016) Voltammetric determination of folic acid using adsorption of methylene blue onto electrodeposited of reduced graphene oxide film modified glassy carbon electrode. Electroanalysis 28:312–319CrossRefGoogle Scholar
  23. 23.
    Wang J, Jiang M (2000) Toward genolelectronics: nucleic acid doped conducting polymers. Langmuir 16:2269–2274CrossRefGoogle Scholar
  24. 24.
    Tiwari I, Gupta M, Pandey CM, Mishra V (2015) Gold nanoparticle decorated graphene sheet-polypyrrole based nanocomposite: its synthesis, characterization and genosensing application. Dalton Trans 44:15557–15566CrossRefGoogle Scholar
  25. 25.
    Daniel Arulraj A, Arunkumar A, Vijayan M, Balaji Viswanath K, Vasantha VS (2016) A simple route to develop highly porous nano polypyrrole/reduced graphene oxide composite film for selective determination of dopamine. Electrochim Acta 206:77–85CrossRefGoogle Scholar
  26. 26.
    Liu H, Gao J, Xue M, Zhu N, Zhang M, Cao T (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010CrossRefGoogle Scholar
  27. 27.
    Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306CrossRefGoogle Scholar
  28. 28.
    Zhang D, Fu L, Liao L, Dai B, Zou R, Zhang C (2012) Electrochemically functional graphene nanostructure and layer-by-layer nanocomposite incorporating adsorption of electroactive methylene blue. Electrochim Acta 75:71–79CrossRefGoogle Scholar
  29. 29.
    Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369CrossRefGoogle Scholar
  30. 30.
    Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B 186:380–387CrossRefGoogle Scholar
  31. 31.
    Xu G, Jarjes ZA, Desprez V, Kilmartin PA, Travas-Sejdic J (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191CrossRefGoogle Scholar
  32. 32.
    Li J, Yang J, Yang Z, Li Y, Yu S, Xua Q, Hu X (2012) Graphene-au nanoparticles nanocomposite film for selective electrochemical determination of dopamine determination of dopamine. Anal Methods 4:1725–1728CrossRefGoogle Scholar
  33. 33.
    Mathew G, Dey P, Das R, Chowdhury SD, Paul Das M, Veluswamy P, Neppolian B, Das J (2018) Direct electrochemical reduction of hematite decorated graphene oxide (alpha-Fe2O3@erGO) nanocomposite for selective detection of Parkinson's disease biomarker. Biosens Bioelectron 115:53–60CrossRefGoogle Scholar
  34. 34.
    Zhang C, Ren J, Zhou J, Cui M, Li N, Han B, Chen Q (2018) Facile fabrication of a 3,4,9,10-perylene tetracarboxylic acid functionalized graphene-multiwalled carbon nanotube-gold nanoparticle nanocomposite for highly sensitive and selective electrochemical detection of dopamine. Analyst 143:3075–3084CrossRefGoogle Scholar
  35. 35.
    Mir TA, Akhtar MH, Gurudatt NG, Kim JI, Choi CS, Shim YB (2015) An amperometric nanobiosensor for the selective detection of K(+)-induced dopamine released from living cells. Biosens Bioelectron 68:421–428CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xia Chen
    • 1
  • Dandan Li
    • 1
  • Weina Ma
    • 1
  • Tianfeng Yang
    • 1
  • Yanmin Zhang
    • 1
  • Dongdong Zhang
    • 1
    Email author
  1. 1.School of PharmacyXi’an Jiaotong UniversityXi’anChina

Personalised recommendations