Microchimica Acta

, 186:406 | Cite as

Fluorometric determination of okadaic acid using a truncated aptamer

  • Raja Chinnappan
  • Razan AlZabn
  • Tanveer Ahmad Mir
  • Mamoun Bader
  • Mohammed ZourobEmail author
Original Paper


Okadaic acid (OKA), a marine toxin produced by dinoflagellates, is responsible for most human diarrhetic shellfish poisoning-associated health disorders. A competitive displacement assay for OKA is described here. An OKA-binding aptamer was truncated with two sequences, one labeled with 6-carboxyfluorescein (FAM), and one with a quencher. On addition of OKA, it will bind to the aptamer and green fluorescence pops up because label and quencher become spatially separated. One of the truncated aptamers exhibis an excellent binding capability (Kd 2.77 nM) for OKA compared to its full-length aptamer (526 nM). The selectivity of the assay was proven by the successful fluorometric determination of OKA in the presence of common diarrhoetic toxins and in shellfish extracts. The detection limit is as low as 39 pg·mL−1.

Graphical abstract

Schematic representation of the competitive displacement assay for okadaic acid (OKA). The OKA-binding aptamer is truncated with two parts, one labeled with 6-carboxyfluorescein (FAM), and one with a quencher. On addition of OKA, green fluorescence pops up because label and quencher become spatially separated.


Okadaic acid Truncated aptamer Toxins Aptasensor Shellfish poisoning Fluorescence assay Fluorescence quenching Food poisoning Aptamer binding probe and dinoflagellates toxins 


Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3517_MOESM1_ESM.docx (132 kb)
ESM 1 (DOCX 132 kb)


  1. 1.
    Camacho FG, Rodríguez FG, Mirón AS, García MCC, Belarbi EH, Chisti Y, Grima EM (2007) Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 25:176–194CrossRefGoogle Scholar
  2. 2.
    Lee JS, Igarashi T, Fraga S, Dahl E, Hovgaard P, Yasumoto T (1989) Determination of diarrhetic shellfish toxins in various dinoflagellate species. J Appl Phycol 1:147–152CrossRefGoogle Scholar
  3. 3.
    An T, Winshell J, Scorzetti G, Fell JW, Rein KS (2010) Identification of okadaic acid production in the marine dinoflagellate Prorocentrum rhathymum from Florida bay. Toxicon 55:653–657CrossRefGoogle Scholar
  4. 4.
    Reguera B, Velo-Suárez L, Raine R, Park MG (2012) Harmful Dinophysis species: a review. Harmful Algae 14:87–106CrossRefGoogle Scholar
  5. 5.
    Konoki K, Okada K, Kohama M, Matsuura H, Saito K, Cho Y, Nishitani G, Miyamoto T, Fukuzawa S, Tachibana K (2015) Identification of okadaic acid binding protein 2 in reconstituted sponge cell clusters from Halichondria okadai and its contribution to the detoxification of okadaic acid. Toxicon 108:38–45CrossRefGoogle Scholar
  6. 6.
    Dounay AB, Forsyth CJ (2002) Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor. Curr Med Chem 9:1939–1980CrossRefGoogle Scholar
  7. 7.
    Meštrović V, Pavela-Vrančič M (2003) Inhibition of alkaline phosphatase activity by okadaic acid, a protein phosphatase inhibitor. Biochim 85:647–650CrossRefGoogle Scholar
  8. 8.
    Deeds JR, Wiles K, Vi GBH, White KD, Abraham A (2010) First US report of shellfish harvesting closures due to confirmed okadaic acid in Texas Gulf coast oysters. Toxicon 55:1138–1146CrossRefGoogle Scholar
  9. 9.
    Stabell OB, Steffenak I, Aune T (1992) An evaluation of the mouse bioassay applied to extracts of ‘diarrhoetic’shellfish toxins. Food Chem Toxicol 30:139–144CrossRefGoogle Scholar
  10. 10.
    Liu BH, Hung CT, Lu CC, Chou HN, Yu FY (2014) Production of monoclonal antibody for okadaic acid and its utilization in an ultrasensitive enzyme-linked immunosorbent assay and one-step immunochromatographic strip. J Agric Food Chem 62:1254–1260CrossRefGoogle Scholar
  11. 11.
    Nogueiras MJ, Gago-Martínez A, Paniello AI, Twohig M, James KJ, Lawrence JF (2003) Comparison of different fluorimetric HPLC methods for analysis of acidic polyether toxins in marine phytoplankton. Anal Bioanal Chem 377:1202–1206CrossRefGoogle Scholar
  12. 12.
    Wu Z, Wang B, Sun Y, Liu Y (2015) Improvement of determination method of okadaic acid in shellfish by liquid chromatography-tandem mass spectrometry. J Food Saf Qual 6:265–271Google Scholar
  13. 13.
    Sassolas A, Catanante G, Hayat A, Marty JL (2011) Development of an efficient protein phosphatase-based colorimetric test for okadaic acid detection. Anal Chim Acta 702:262–268CrossRefGoogle Scholar
  14. 14.
    Garibo D, Campbell K, Casanova A, de la Iglesia P, Fernández-Tejedor M, Diogène J, Elliott CT, Campàs M (2014) SPR immunosensor for the detection of okadaic acid in mussels using magnetic particles as antibody carriers. Sensors Actuators B Chem 190:822–828CrossRefGoogle Scholar
  15. 15.
    Lin C, Liu ZS, Wang DX, Ren HL, Li YS, Hu P, Zhou Y, Guo YP, Meng XM, Lu SY (2014) Sensitive and reliable micro-plate chemiluminescence enzyme immunoassay for okadaic acid in shellfish. Anal Methods 6:7142–7148CrossRefGoogle Scholar
  16. 16.
    Hayat A, Barthelmebs L, Marty JL (2012) Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sensors Actors B Chem 171-172:810–815CrossRefGoogle Scholar
  17. 17.
    Eissa S, Zourob M (2012) A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish. Nanoscal 4:7593–7599CrossRefGoogle Scholar
  18. 18.
    Mir TA, Yoon JH, Gurudatt NG, Won MS, Shim YB (2015) Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: detection of human non-small-cell lung cancer cells. Biosens Bioelectron 74:594–600CrossRefGoogle Scholar
  19. 19.
    Thiviyanathan V, Gorenstein DG (2012) Aptamers and the next generation of diagnostic reagents. Proteom Clin Appl 6:563–573CrossRefGoogle Scholar
  20. 20.
    Song KM, Lee S, Ban C (2012) Aptamers and their biological applications. Sensor 12:612–631CrossRefGoogle Scholar
  21. 21.
    Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650PubMedGoogle Scholar
  22. 22.
    Lau PS, Li Y (2014) Exploration of structure-switching in the Design of Aptamer Biosensors. Adv Biochem Eng Biotechnol 140:69–92PubMedGoogle Scholar
  23. 23.
    Almusharraf AY, Eissa S, Zourob M (2018) Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Microchim Act 185:256CrossRefGoogle Scholar
  24. 24.
    MacDonald J, Houghton P, Xiang D, Duan W, Shigdar S (2016) Truncation and mutation of a transferrin receptor aptamer enhances binding affinity. Nucl Acid Therapeut 26:348–354CrossRefGoogle Scholar
  25. 25.
    Kaur H, Yung LYL (2012) Probing high affinity sequences of DNA aptamer against VEGF. 165. PLoS One 7(2):e31196CrossRefGoogle Scholar
  26. 26.
    Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Salah KMA, Zourob M (2018) Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Microchim Acta 185:61CrossRefGoogle Scholar
  27. 27.
    Eissa S, Ng A, Siaj M, Tavares AC, Zourob M (2013) Selection and identification of DNA aptamers against Okadaic acid for biosensing application. Anal Chem 85:11794–11801CrossRefGoogle Scholar
  28. 28.
    Gao S, Zheng X, Jiao B (2016) Wang L, post-SELEX optimization of aptamers. Anal Bioanal Chem 408:4567–4573CrossRefGoogle Scholar
  29. 29.
    Cowperthwaite MC, Ellington AD (2008) Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol 67:95–102CrossRefGoogle Scholar
  30. 30.
    Wang Z, Yu H, Canoura J, Liu Y, Alkhamis O, Fu F, Xiao Y (2018) Introducing structure-switching functionality into small-molecule-binding aptamers via nuclease-directed truncation. Nucleic Acids Res 46(13):81CrossRefGoogle Scholar
  31. 31.
    Gong S, Wang Y, Wang Z, Zhang W (2017) Computational methods for modeling aptamers and designing riboswitches. Int J Mol Sci 18:2442CrossRefGoogle Scholar
  32. 32.
    Chovelon B, Durand G, Dausse E, Toulmé JJ, Faure P, Peyrin E, Ravelet C (2016) ELAKCA: enzyme-linked aptamer kissing complex assay as a small molecule sensing platform. Anal Chem 88:2570–2575CrossRefGoogle Scholar
  33. 33.
    Louppis AP, Badeka AV, Katikou P, Paleologos EK, Kontominas MG (2010) Determination of okadaic acid, dinophysistoxin-1 and related esters in Greek mussels using HPLC with fluorometric detection, LC-MS/MS and mouse bioassay. Toxicon 55:724–733CrossRefGoogle Scholar
  34. 34.
    Antunes J, Justino C, da Costa JP, Cardoso S, Duarte AC, Rocha-Santos T (2018) Graphene immunosensors for okadaic acid detection in seawater. Microchem J 138:465–471CrossRefGoogle Scholar
  35. 35.
    Aljohani MM, Chinnappan R, Eissa S, Alsager OA, Weber K, Cialla-May D, Popp J, Zourob M (2018) In vitro selection of specific DNA aptamers against the anti-coagulant dabigatran Etexilate. Sci Rep 8:13290CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Raja Chinnappan
    • 1
  • Razan AlZabn
    • 1
  • Tanveer Ahmad Mir
    • 1
  • Mamoun Bader
    • 1
  • Mohammed Zourob
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryAlfaisal UniversityRiyadhSaudi Arabia
  2. 2.King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia

Personalised recommendations