Advertisement

Microchimica Acta

, 186:405 | Cite as

Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review

  • Zhenhao Wang
  • Renzhong Yu
  • Hui Zeng
  • Xinxing Wang
  • Shizong Luo
  • Weihua LiEmail author
  • Xiliang LuoEmail author
  • Tao YangEmail author
Review Article

Abstract

The demand of precise assay of nucleic acids and other bioanalytes has been increasing enormously in various areas including point-of-care diagnostics, military, environmental monitoring and so on. Compared with other nucleic acid biosensors, the electrochemical nucleic acid biosensors possess a range of merits like amenable miniaturization, low costs and high sensitivity. Ratiometric electrochemical nucleic acid biosensors can overcome the inherent systematic errors of conventional electrochemical biosensors and enhance the reproducibility and credibility. This short review (with 81 refs.) summarizes the evolvements made in the area of nucleic acid-based biosensors based on ratiometric (electrochemiluminescent, electrochemical and photoelectrochemical) readout in the past few years. Many of the methods discussed here are based on the use of advanced nanomaterials such as quantum dots, graphitic carbon nitrides, graphene oxide, C-dots, gold nanoparticles, metal-organic frameworks, and respective nanohybrids. Three sections (on electrochemiluminescence, classical electrochemical and emerging photoelectrochemical systems) demonstrate the merits of ratiometric assays in various applications. The review ends with a section with conclusions and a discussion of future perspectives.

Graphical abstract

Ratiometric sensing strategies overcome the intrinsic systematic errors of conventional electrochemical sensors that suffer from environmental and personal factors, and thus leads to remarkably enhanced reproducibility and reliability.

Keywords

Ratiometric detection Ratio of signals Methylene blue Ferrocene 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21675092, 51525903, 21804076), Aoshan Talents Outstanding Scientist Program Supported by Qingdao National Laboratory for Marine Science and Technology (No. 2017ASTCP-OS09), Special Project on the Integration of Industry, Education and Research of Guangzhou (No. 201604016008), Foshan Nanhai Economic and Technological Promotion Bureau Project (No. 20177611071010008) and Applied Basic Research Program of Qingdao (No. 17-1-1-65-jch).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Taleat Z, Mathwig K, Sudhöltera EJR, Rassaei L (2015) Detection strategies for methylated and hypermethylated DNA. Trends Anal Chem 66:80–89.  https://doi.org/10.1016/j.trac.2014.11.013 CrossRefGoogle Scholar
  2. 2.
    Wang WT, Fan XJ, Xu SH, Davis JJ, Luo XL (2015) Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosens Bioelectron 71:51–56.  https://doi.org/10.1016/j.bios.2015.04.018 CrossRefPubMedGoogle Scholar
  3. 3.
    Geng P, Zhang X, Teng YQ, Fu Y, Xu LL, Xu M, Jin LT, Zhang W (2011) A DNA sequence-specific electrochemical biosensor based on alginic acid-coated cobalt magnetic beads for the detection of E. coli. Biosens Bioelectron 26:3325–3330.  https://doi.org/10.1016/j.bios.2011.01.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Wang XX, Nan FX, Zhao JL, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391.  https://doi.org/10.1016/j.bios.2014.09.030 CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang FT, Cai LY, Zhou YL, Zhang XX (2016) Immobilization-free DNA-based homogeneous electrochemical biosensors. Trends Anal Chem 85:17–32.  https://doi.org/10.1016/j.trac.2016.08.012 CrossRefGoogle Scholar
  6. 6.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998.  https://doi.org/10.1021/cr030183i CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lin XX, Sun XY, Luo S, Liu B, Yang CX (2016) Development of DNA-based signal amplification and microfluidic technology for protein assay: a review. Trends Anal Chem 80:132–148.  https://doi.org/10.1016/j.trac.2016.02.020 CrossRefGoogle Scholar
  8. 8.
    Kim YS, Raston NHA, Gu MB (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19.  https://doi.org/10.1016/j.bios.2015.06.040 CrossRefPubMedGoogle Scholar
  9. 9.
    Lu MH, Xiao R, Zhang XN, Niu JH, Zhang XT, Wang YM (2016) Novel electrochemical sensing platform for quantitative monitoring of hg(II) on DNA-assembled graphene oxide with target recycling. Biosens Bioelectron 85:267–271.  https://doi.org/10.1016/j.bios.2016.05.027 CrossRefPubMedGoogle Scholar
  10. 10.
    Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139.  https://doi.org/10.1021/cr0684467 CrossRefPubMedGoogle Scholar
  11. 11.
    Yang T, Chen MJ, Nan FX, Chen LH, Luo XL, Jiao K (2015) Enhanced electropolymerization of poly(xanthurenic acid)-MoS2 film for specific electrocatalytic detection of guanine and adenine. J Mater Chem B 3:4884–4891  https://doi.org/10.1039/C5TB00227C CrossRefGoogle Scholar
  12. 12.
    Xu GY, Wang WT, Li BB, Luo ZL, Luo XL (2015) A dopamine sensor based on a carbon paste electrode modified with DNA-doped poly(3,4-ethylenedioxythiophene). Microchim Acta 182:679–685.  https://doi.org/10.1007/s00604-014-1373-8 CrossRefGoogle Scholar
  13. 13.
    Yang T, Guan Q, Guo XH, Meng L, Du M, Jiao K (2013) Direct and freely switchable detection of target genes engineered by reduced graphene oxide-poly(m-aminobenzenesulfonic acid) nanocomposite via synchronous pulse electrosynthesis. Anal Chem 85:1358–1366.  https://doi.org/10.1021/ac3030009 CrossRefPubMedGoogle Scholar
  14. 14.
    Yu J, Jin H, Gui R, Wang Z, Ge F (2017) A general strategy to facilely design ratiometric electrochemical sensors in electrolyte solution by directly using a bare electrode for dual-signal sensing of analytes. Talanta 162:435–439.  https://doi.org/10.1016/j.talanta.2016.10.084 CrossRefPubMedGoogle Scholar
  15. 15.
    Yu J, Jin H, Gui R, Lv W, Wang Z (2017) A facile strategy for ratiometric electrochemical sensing of quercetin in electrolyte solution directly using bare glassy carbon electrode. J Electroanal Chem 795:97–102.  https://doi.org/10.1016/j.jelechem.2017.04.053 CrossRefGoogle Scholar
  16. 16.
    Du Y, Lim BJ, Li BL, Jiang YS, Sessler JL, Ellington AD (2014) Reagentless, ratiometric electrochemical DNA sensors with improved robustness and reproducibility. Anal Chem 86:8010–8016.  https://doi.org/10.1021/ac5025254 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li DP, Zhang JF, Cui J, Ma XF, Liu JT, Miao JY, Zhao BX (2016) A ratiometric fluorescent probe for fast detection of hydrogen sulfide and recognition of biological thiols. Sensors Actuators B Chem 234:231–238.  https://doi.org/10.1016/j.snb.2016.04.164 CrossRefGoogle Scholar
  18. 18.
    Maity D, Schmuck C (2016) Fluorescent peptide beacons for the selective ratiometric detection of heparin. Chem Eur J 22:13156–13161.  https://doi.org/10.1002/chem.201602240/abstract CrossRefPubMedGoogle Scholar
  19. 19.
    Jin H, Gui R, Yu J, Lv W, Wang Z (2017) Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors. Biosens Bioelectron 91:523–537.  https://doi.org/10.1016/j.bios.2017.01.011 CrossRefPubMedGoogle Scholar
  20. 20.
    Wu P, Hou X, Xu JJ, Chen HY (2016) Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 8(16):8427–8442  https://doi.org/10.1039/C6NR01912A CrossRefPubMedGoogle Scholar
  21. 21.
    Xiong EH, Zhang XH, Liu YQ, Zhou JW, Yu P, Li XY, Chen JH (2015) Ultrasensitive electrochemical detection of nucleic acids based on the dual-signaling electrochemical ratiometric method and exonuclease III-assisted target recycling amplification strategy. Anal Chem 87:7291–7296.  https://doi.org/10.1021/acs.analchem.5b01402 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao C, Jin H, Gui R, Wang Z (2017) Facile fabrication of dual-ratiometric electrochemical sensors based on a bare electrode for dual-signal sensing of analytes in electrolyte solution. Sensors Actuators B Chem 242:71–78.  https://doi.org/10.1016/j.snb.2016.11.036 CrossRefGoogle Scholar
  23. 23.
    Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036.  https://doi.org/10.1021/cr020373d CrossRefPubMedGoogle Scholar
  24. 24.
    Fähnrich KA, Pravda M, Guilbault GG (2001) Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 54(4):531–559.  https://doi.org/10.1016/S0039-9140(01)00312-5 CrossRefPubMedGoogle Scholar
  25. 25.
    Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553.  https://doi.org/10.1021/cr068083a CrossRefPubMedGoogle Scholar
  26. 26.
    Gu W, Deng X, Gu X, Jia X, Lou B, Zhang XW, Li J, Wang EK (2015) Stabilized, superparamagnetic functionalized graphene/Fe3O4@au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application. Anal Chem 87(3):1876–1881.  https://doi.org/10.1021/ac503966u CrossRefPubMedGoogle Scholar
  27. 27.
    Liu S, Zhang X, Yu Y, Zou G (2014) A monochromatic electrochemiluminescence sensing strategy for dopamine with dual-stabilizers-capped CdSe quantum dots as emitters. Anal Chem 86(5):2784–2788.  https://doi.org/10.1021/ac500046s CrossRefPubMedGoogle Scholar
  28. 28.
    Jie G, Wang L, Yuan J, Zhang S (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83(10):3873–3880.  https://doi.org/10.1021/ac200383z CrossRefPubMedGoogle Scholar
  29. 29.
    Li J, Li S, Wei X, Tao H, Pan H (2012) Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3. Anal Chem 84(22):9951–9955.  https://doi.org/10.1021/ac302401s CrossRefPubMedGoogle Scholar
  30. 30.
    Li F, Yu Y, Li Q, Zhou M, Cui H (2014) A homogeneous signal-on strategy for the detection of rpoB genes of mycobacterium tuberculosis based on electrochemiluminescent graphene oxide and ferrocene quenching. Anal Chem 86(3):1608–1613.  https://doi.org/10.1021/ac403281g CrossRefPubMedGoogle Scholar
  31. 31.
    Sun B, Qi H, Ma F, Gao Q, Zhang C, Miao W (2010) Double covalent coupling method for the fabrication of highly sensitive and reusable electrogenerated chemiluminescence sensors. Anal Chem 82(12):5046–5052.  https://doi.org/10.1021/ac9029289 CrossRefPubMedGoogle Scholar
  32. 32.
    Pinaud F, Russo L, Pinet S, Gosse I, Ravaine V, Sojic N (2013) Enhanced electrogenerated chemiluminescence in thermoresponsive microgels. J Am Chem Soc 135(15):5517–5520.  https://doi.org/10.1021/ja401011j CrossRefPubMedGoogle Scholar
  33. 33.
    Xu S, Liu Y, Wang T, Li J (2011) Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem 83(10):3817–3823.  https://doi.org/10.1021/ac200237j CrossRefPubMedGoogle Scholar
  34. 34.
    Wu MS, Yuan DJ, Xu JJ, Chen HY (2013) Sensitive electrochemiluminescence biosensor based on au-ITO hybrid bipolar electrode amplification system for cell surface protein detection. Anal Chem 85(24):11960–11965.  https://doi.org/10.1021/ac402889z CrossRefPubMedGoogle Scholar
  35. 35.
    Zeng X, Ma S, Bao J, Tu W, Dai Z (2013) Using graphene-based plasmonic nanocomposites to quench energy from quantum dots for signal-on photoelectrochemical aptasensing. Anal Chem 85(24):11720–11724.  https://doi.org/10.1021/ac403408y CrossRefPubMedGoogle Scholar
  36. 36.
    Li L, Li M, Sun Y, Li J, Sun L, Zou G, Zhang X, Jin W (2011) Electrochemiluminescence resonance energy transfer between an emitter electrochemically generated by luminol as the donor and luminescent quantum dots as the acceptor and its biological application. Chem Commun 47(29):8292–8294  https://doi.org/10.1039/C1CC11431J CrossRefGoogle Scholar
  37. 37.
    Lin X, Zheng L, Gao G, Chi Y, Chen G (2012) Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells. Anal Chem 84(18):7700–7707.  https://doi.org/10.1021/ac300875x CrossRefPubMedGoogle Scholar
  38. 38.
    Crespo GA, Mistlberger G, Bakker E (2011) Electrogenerated chemiluminescence for potentiometric sensors. J Am Chem Soc 134(1):205–207.  https://doi.org/10.1021/ja210600k CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang X, Chen C, Li J, Zhang L, Wang E (2013) New insight into a microfluidic-based bipolar system for an electrochemiluminescence sensing platform. Anal Chem 85(11):5335–5339.  https://doi.org/10.1021/ac400805f CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang L, Cheng Y, Lei J, Liu Y, Hao Q, Ju H (2013) Stepwise chemical reaction strategy for highly sensitive electrochemiluminescent detection of dopamine. Anal Chem 85(16):8001–8007.  https://doi.org/10.1021/ac401894w CrossRefPubMedGoogle Scholar
  41. 41.
    Lim CS, Masanta G, Kim HJ, Han JH, Kim HM, Cho BR (2011) Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe. J Am Chem Soc 133(29):11132–11135.  https://doi.org/10.1021/ja205081s CrossRefPubMedGoogle Scholar
  42. 42.
    Chen H, Li W, Wang Q, Jin X, Nie Z, Yao S (2016) Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochim Acta 214:94–102.  https://doi.org/10.1016/j.electacta.2016.08.028 CrossRefGoogle Scholar
  43. 43.
    Yu X, Hu L, Zhang F, Wang M, Xia Z, Wei W (2018) MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim Acta 185(4):239–247.  https://doi.org/10.1007/s00604-018-2773-y CrossRefGoogle Scholar
  44. 44.
    Zhang HR, Xu JJ, Chen HY (2013) Electrochemiluminescence ratiometry: a new approach to DNA biosensing. Anal Chem 85:5321–5325.  https://doi.org/10.1021/ac400992u CrossRefPubMedGoogle Scholar
  45. 45.
    Cheng Y, Huang Y, Lei J, Zhang L, Ju H (2014) Design and biosensing of Mg2+-dependent DNAzyme-triggered ratiometric electrochemiluminescence. Anal Chem 86(10):5158–5163.  https://doi.org/10.1021/ac500965p CrossRefPubMedGoogle Scholar
  46. 46.
    Hao N, Li XL, Zhang HR, Xu JJ, Chen HY (2014) A highly sensitive ratiometric electrochemiluminescent biosensor for microRNA detection based on cyclic enzyme amplification and resonance energy transfer. Chem Commun 50:14828–14830  https://doi.org/10.1039/C4CC06801G CrossRefGoogle Scholar
  47. 47.
    Cao JT, Wang YL, Wang JB, Zhou QM, Ma SH, Liu YM (2018) An electrochemiluminescence ratiometric self-calibrated biosensor for carcinoembryonic antigen detection. J Electroanal Chem 814:111–117.  https://doi.org/10.1016/j.jelechem.2018.02.052 CrossRefGoogle Scholar
  48. 48.
    Jiang X, Wang H, Yuan R, Chai Y (2015) Sensitive electrochemiluminescence detection for CA15-3 based on immobilizing luminol on dendrimer functionalized ZnO nanorods. Biosens Bioelectron 63:33–38.  https://doi.org/10.1016/j.bios.2014.07.009 CrossRefPubMedGoogle Scholar
  49. 49.
    Feng QM, Shen YZ, Li MX, Zhang ZL, Zhao W, Xu JJ, Chen HY (2016) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)3 2+ for microRNA detection. Anal Chem 88:937–944.  https://doi.org/10.1021/acs.analchem.5b03670 CrossRefPubMedGoogle Scholar
  50. 50.
    Wang YZ, Hao N, Feng QM, Shi HW, Xu JJ, Chen HY (2016) A ratiometric electrochemiluminescence detection for cancer cells using g-C3N4 nanosheets and ag-PAMAM-luminol nanocomposites. Biosens Bioelectron 77:76–82.  https://doi.org/10.1016/j.bios.2015.08.057 CrossRefPubMedGoogle Scholar
  51. 51.
    Guo Z, Qiao B, Guo Q, Zhang H, Cai C, Feng JJ (2018) Dual-signal ratiometric electrochemiluminescence assay for detecting the activity of human methyltransferase. Analyst 143(14):3353–3359  https://doi.org/10.1039/C8AN00611C CrossRefPubMedGoogle Scholar
  52. 52.
    Wang Y, Shan D, Wu G, Wang H, Ru F, Zhang X, Li LF, Qian YX, Lu X (2018) A novel “dual-potential” ratiometric electrochemiluminescence DNA sensor based on enhancing and quenching effect by G-quadruplex/hemin and au-Luminol bifunctional nanoparticles. Biosens Bioelectron 106:64–70.  https://doi.org/10.1016/j.bios.2018.01.052 CrossRefPubMedGoogle Scholar
  53. 53.
    Xiao Y, .Lubin AA, Baker BR, Plaxco KW, Heeger AJ (2006) Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc Natl Acad Sci U S A 103: 16677–16680.  https://doi.org/10.1073/pnas.0607693103 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gao FL, Du LL, Zhang Y, Tang DT, Du Y (2015) Molecular beacon mediated circular strand displacement strategy for constructing a ratiometric electrochemical deoxyribonucleic acid sensor. Anal Chim Acta 883:67–73.  https://doi.org/10.1016/j.aca.2015.04.058 CrossRefPubMedGoogle Scholar
  55. 55.
    Xiong EH, Li ZZ, Zhang XH, Zhou JW, Yan XX, Liu YQ, Chen JH (2017) Triple-helix molecular switch electrochemical ratiometric biosensor for ultrasensitive detection of nucleic acids. Anal Chem 89:8830–8835.  https://doi.org/10.1021/acs.analchem.7b01251 CrossRefPubMedGoogle Scholar
  56. 56.
    Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349.  https://doi.org/10.1016/j.bios.2014.11.046 CrossRefPubMedGoogle Scholar
  57. 57.
    Jia J, Chen HG, Feng J, Lei JL, Luo HQ, Li NB (2016) A regenerative ratiometric electrochemical biosensor for selective detecting Hg2+ based on Y-shaped/hairpin DNA transformation. Anal Chim Acta 908:95–101.  https://doi.org/10.1016/j.aca.2015.12.028 CrossRefPubMedGoogle Scholar
  58. 58.
    Ge L, Wang WX, Li F (2017) Electro-grafted electrode with graphene-oxide-like DNA affinity for ratiometric homogeneous electrochemical biosensing of microRNA. Anal Chem 89:11560–11567.  https://doi.org/10.1021/acs.analchem.7b02896 CrossRefPubMedGoogle Scholar
  59. 59.
    Wang LL, Ma RN, Jiang LS, Jia LP, Jia WL, Wang HS (2017) A novel “signal-on/off” sensing platform for selective detection of thrombin based on target-induced ratiometric electrochemical biosensing and biobar-coded nanoprobe amplification strategy. Biosens Bioelectron 92:390–395.  https://doi.org/10.1016/j.bios.2016.10.089 CrossRefPubMedGoogle Scholar
  60. 60.
    Ma RN, Wang LL, Zhang M, Jia LP, Zhang W, Shang L, Jia WL, Wang HS (2018) A novel one-step triggered “signal-on/off” electrochemical sensing platform for lead based on the dual-signal ratiometric output and electrode-bound DNAzyme assembly. Sensors Actuators B Chem 257:678–684.  https://doi.org/10.1016/j.snb.2017.10.158 CrossRefGoogle Scholar
  61. 61.
    Cui L, Lu MF, Yang XY, Tang B, Zhang CY (2017) A sensitive ratiometric electrochemical biosensor based on DNA four-way junction formation and enzyme-assisted recycling amplification. Analyst 142:1562–1568  https://doi.org/10.1039/C7AN00342K CrossRefPubMedGoogle Scholar
  62. 62.
    Cui L, Lu MF, Li Y, Tang B, Zhang CY (2018) A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Biosens Bioelectron 102:87–93.  https://doi.org/10.1016/j.bios.2017.11.025 CrossRefPubMedGoogle Scholar
  63. 63.
    Shen WJ, Zhuo Y, Chai YQ, Yuan R (2015) Cu-based metal-organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection. Anal Chem 87:11345–11352.  https://doi.org/10.1021/acs.analchem.5b02694 CrossRefPubMedGoogle Scholar
  64. 64.
    Jin H, Zhao C, Gui R, Gao X, Wang Z (2018) Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal Chim Acta 1025:154–162.  https://doi.org/10.1016/j.aca.2018.03.036 CrossRefPubMedGoogle Scholar
  65. 65.
    Deng C, Pi X, Qian P, Chen X, Wu W, Xiang J (2016) High-performance ratiometric electrochemical method based on the combination of signal probe and inner reference probe in one hairpin-structured DNA. Anal Chem 89(1):966–973CrossRefGoogle Scholar
  66. 66.
    Yu P, Zhou J, Wu L, Xiong E, Zhang X, Chen J (2014) A ratiometric electrochemical aptasensor for sensitive detection of protein based on aptamer–target–aptamer sandwich structure. J Electroanal Chem 732:61–65.  https://doi.org/10.1016/j.jelechem.2014.08.034 CrossRefGoogle Scholar
  67. 67.
    Gao FL, Qian Y, Zhang L, Dai SZ, Lan YF, Zhang Y, Du LL, Tang DQ (2015) Target catalyzed hairpin assembly for constructing a ratiometric electrochemical aptasensor. Biosens Bioelectron 71:158–163.  https://doi.org/10.1016/j.bios.2015.04.040 CrossRefPubMedGoogle Scholar
  68. 68.
    Ren KW, Wu J, Yan F, Ju HX (2014) Ratiometric electrochemical proximity assay for sensitive one-step protein detection. Sci Rep-UK 4:4360CrossRefGoogle Scholar
  69. 69.
    Xiong EH, Wu L, Zhou JW, Yu P, Zhang XH, Chen JH (2015) A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine–Hg2+–thymine structure. Anal Chim Acta 853:242–248CrossRefGoogle Scholar
  70. 70.
    Li HB, Qiao YF, Li J, Fang HL, Fan D, Wang W (2016) A sensitive and label-free photoelectrochemical aptasensor using co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens Bioelectron 77:378–384.  https://doi.org/10.1016/j.bios.2015.09.066 CrossRefPubMedGoogle Scholar
  71. 71.
    Moakhar RS, Goh GKL, Dolati A, Ghorbani M (2015) A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium. Electrochem Commun 61:110–113.  https://doi.org/10.1016/j.elecom.2015.10.011 CrossRefGoogle Scholar
  72. 72.
    Zhang Y, Ma HM, Wu D, Li RXL, Wang XP, Wang YG, Zhu WJ, Wei Q, Du B (2016) A generalized in situ electrodeposition of Zn doped CdS-based photoelectrochemical strategy for the detection of two metal ions on the same sensing platform. Biosens Bioelectron 77:936–941.  https://doi.org/10.1016/j.bios.2015.10.074 CrossRefPubMedGoogle Scholar
  73. 73.
    Wang GL, Xu JJ, Chen HY (2009) Progress in the studies of photoelectrochemical sensors. Sci China Ser B 52(11):1789–1800.  https://doi.org/10.1007/s11426-009-0271-0 CrossRefGoogle Scholar
  74. 74.
    Zhang Y, Hao N, Zhou Z, Hua R, Qian J, Liu Q, Li HN, Wang K (2017) A potentiometric resolved ratiometric photoelectrochemical aptasensor. Chem Commun 53(43):5810–5813  https://doi.org/10.1039/C7CC01582H CrossRefGoogle Scholar
  75. 75.
    Hua R, Hao N, Lu J, Qian J, Liu Q, Li HN, Wang K (2018) A sensitive potentiometric resolved ratiometric Photoelectrochemical aptasensor for Escherichia coli detection fabricated with non-metallic nanomaterials. Biosens Bioelectron 106:57–63  https://doi.org/10.1016/j.bios.2018.01.053 CrossRefPubMedGoogle Scholar
  76. 76.
    Zheng YN, Liang WB, Xiong CY, Zhuo Y, Chai YQ, Yuan R (2017) Universal ratiometric photoelectrochemical bioassay with target-nucleotide transduction-amplification and electron-transfer tunneling distance regulation strategies for ultrasensitive determination of microRNA in cells. Anal Chem 89(17):9445–9451.  https://doi.org/10.1021/acs.analchem.7b02270 CrossRefPubMedGoogle Scholar
  77. 77.
    Cheng HJ, Wang XY, Wei H (2015) Ratiometric electrochemical sensor for effective and reliable detection of ascorbic acid in living brains. Anal Chem 87(17):8889–8895.  https://doi.org/10.1021/acs.analchem.5b02014 CrossRefPubMedGoogle Scholar
  78. 78.
    Yang T, Yu RZ, Liu SM, Qiu ZW, Luo SZ, Li WH, Jiao K (2018) A ratiometric electrochemical deoxyribonucleic acid sensing strategy based on self-signal of highly stable reduced graphene oxide-flavin mononucleotide aqueous dispersion modified nanointerface. Sensors Actuators B Chem 267:519–524.  https://doi.org/10.1016/j.snb.2018.04.067 CrossRefGoogle Scholar
  79. 79.
    Yang T, Yu RZ, Yan YH, Zeng H, Luo SZ, Liu NZ, Morrin A, Luo XL, Li WH (2018) A review of ratiometric electrochemical sensors: from design schemes to prospects. Sensors Actuators B Chem 274:501–516.  https://doi.org/10.1016/j.snb.2018.07.138 CrossRefGoogle Scholar
  80. 80.
    Li S, Zhu AW, Zhu T, Zhang John ZH, Yang T (2017) Single biosensor for simultaneous quantification of glucose and pH in a rat brain of diabetic model using both current and potential outputs. Anal Chem 89:6656–6662.  https://doi.org/10.1021/acs.analchem.7b00881 CrossRefPubMedGoogle Scholar
  81. 81.
    Feng XB, Gan N, Zhang HR, Li TH, Cao YT, Hu FT, Jiang QL (2016) Ratiometric biosensor array for multiplexed detection of microRNAs based on electrochemiluminescence coupled with cyclic voltammetry. Biosens Bioelectron 75:308–314.  https://doi.org/10.1016/j.bios.2015.08.048 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologySun Yat-sen University, Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai)ZhuhaiChina
  2. 2.Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations