Microchimica Acta

, 186:463 | Cite as

A chemiluminescence resonance energy transfer strategy and its application for detection of platinum ions and cisplatin

  • Sheng Cai
  • Ying Zhou
  • Jiawei Ye
  • Ruizhe Chen
  • Lianli Sun
  • Jianzhong Lu
  • Cheulhee JungEmail author
  • Su ZengEmail author
Original Paper


A novel chemiluminescence resonance energy transfer (CRET) system was developed and combined with a structure-switching aptamer for the highly sensitive detection of platinum. Platinum was chosen as a model analyte to demonstrate the generality of the new CRET system. This aptameric platform consisted of a streptavidin labeled aptamer against platinum and a streptavidin-coated magnetic bead for the selective separation of platinum-bound aptamer. The platinum–aptamer probe contained several guanine (G) bases bound to the 3,4,5-trimethoxyphenyl-glyoxal (TMPG) donor group at the 5′ end, a fluorescent acceptor (6-carboxy-2′,4,7,7′-tetrachlorofluorescein, TET) at the 3′ end, and a streptavidin aptamer sequence in which several base pairs were replaced by the G-G mismatch to induce the platinum-oligonucleotide coordination. The chemiluminescence (CL) generated by TMPG/G bases is transferred to the acceptor (TET). In the presence of platinum, the platinum–aptamer probe was folded such that the G bases at the 5′ end and TET at the 3′ were in close proximity. The complex was separated using streptavidin-coated magnetic beads by the addition of TMPG to form the TMPG/G bases complex. The ultraweak CL from the TMPG/G bases was strongly enhanced by TET. This novel CRET-based method can be easily performed with high limit of detection (50 ng·mL−1) and selectivity over other metal ions. This technique provides a novel method for simple, fast, and convenient point-of-care diagnostics for monitoring proteins and metal ions.

Graphical abstract

Schematic presentation of chemiluminescence resonance energy transfer (CRET) detection of platinum(II) by Pt–base pair coordination to the aptamer. TMPG: 3,4,5-trimethoxyphenyl-glyoxal, fluorophore TET: 6-carboxy-2′,4,7,7′-tetrachlorofluorescein.


CRET Streptavidin aptamer Platinum-oligonucleotide coordination Platinum aptameric platform Platinum detection 



We acknowledge financial support from the Zhejiang Provincial Natural Science Foundation of China (LY18H300003), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1C1B6001112), the National Natural Science Foundation of China (21405136, 81673399), the National Key Project of China (2017YFC0908600) and Scientific Research Fund of Zhejiang Provincial Education Department (Y201430444).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3509_MOESM1_ESM.doc (232 kb)
ESM 1 (DOC 232 kb)


  1. 1.
    Huang XY, Li L, Qian HF, Dong CQ, Ren JC (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed 45(31):5140–5143CrossRefGoogle Scholar
  2. 2.
    Gong YJ, Zhang XB, Zhang CC, Luo AL, Fu T, Tan WH, Shen GL, Yu RQ (2012) Through bond energy transfer: a convenient and universal strategy toward efficient Ratiometric fluorescent probe for bioimaging applications. Anal Chem 84(24):10777–10784CrossRefGoogle Scholar
  3. 3.
    Noor MO, Krull UJ (2014) Camera-based Ratiometric fluorescence transduction of nucleic acid hybridization with Reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem 86(20):10331–10339CrossRefGoogle Scholar
  4. 4.
    Wang C, Ouyang J, Wang YY, Ye DK, Xia XH (2014) Sensitive assay of protease activity on a micro/Nanofluidics Preconcentrator fused with the fluorescence resonance energy transfer detection technique. Anal Chem 86(6):3216–3221CrossRefGoogle Scholar
  5. 5.
    Zhang SS, Yan YM, Bi S (2009) Design of Molecular Beacons as signaling probes for adenosine triphosphate detection in Cancer cells based on Chemiluminescence resonance energy transfer. Anal Chem 81(21):8695–8701CrossRefGoogle Scholar
  6. 6.
    Qin GX, Zhao SL, Huang Y, Jiang J, Ye FG (2012) Magnetic bead-sensing-platform-based Chemiluminescence resonance energy transfer and its immunoassay application. Anal Chem 84(6):2708–2712CrossRefGoogle Scholar
  7. 7.
    Chen H, Li HF, Lin JM (2012) Determination of Ammonia in water based on Chemiluminescence resonance energy transfer between Peroxymonocarbonate and branched NaYF4:Yb3+/Er3+ nanoparticles. Anal Chem 84(20):8871–8879CrossRefGoogle Scholar
  8. 8.
    Dong SC, Liu F, Lu C (2013) Organo-modified Hydrotalcite-quantum dot nanocomposites as a novel Chemiluminescence resonance energy transfer probe. Anal Chem 85(6):3363–3368CrossRefGoogle Scholar
  9. 9.
    You XY, Li YH, Li BP, Ma J (2016) Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin. Talanta 147:63–68CrossRefGoogle Scholar
  10. 10.
    Freeman R, Liu XQ, Willner I (2011) Chemiluminescent and Chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-Quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133(30):11597–11604CrossRefGoogle Scholar
  11. 11.
    Zhao SL, Huang Y, Shi M, Liu RJ, Liu YM (2010) Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis. Anal Chem 82(5):2036–2041CrossRefGoogle Scholar
  12. 12.
    Dong YP, Wang J, Peng Y, Zhu JJ (2017) A novel aptasensor for lysozyme based on electrogenerated chemiluminescence resonance energy transfer between luminol and silicon quantum dots. Biosens Bioelectron 94:530–535CrossRefGoogle Scholar
  13. 13.
    Farokhzad OC, Cheng JJ, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103(16):6315–6320CrossRefGoogle Scholar
  14. 14.
    Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132CrossRefGoogle Scholar
  15. 15.
    Farokhzad OC, Jon SY, Khademhosseini A, Tran TNT, LaVan DA, Langer R (2004) Nanopartide-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672CrossRefGoogle Scholar
  16. 16.
    Liu RJ, Wu H, Lv L, Kang XJ, Cui CB, Feng J, Guo ZJ (2018) Fluorometric aptamer based assay for ochratoxin a based on the use of exonuclease III. Microchim Acta 185(5):254CrossRefGoogle Scholar
  17. 17.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment - Rna ligands to bacteriophage-T4 DNA-polymerase. Science 249(4968):505–510CrossRefGoogle Scholar
  18. 18.
    Hermann T, Patel DJ (2000) Biochemistry - adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825CrossRefGoogle Scholar
  19. 19.
    Al Rubaye A, Nabok A, Catanante G, Marty JL, Takacs E, Szekacs A (2018) Detection of ochratoxin a in aptamer assay using total internal reflection ellipsometry. Sensors Actuators B Chem 263:248–251CrossRefGoogle Scholar
  20. 20.
    Lin YN, Dai YX, Sun YL, Ding CF, Sun WY, Zhu XD, Liu H, Luo CN (2018) A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates. Talanta 182:116–124CrossRefGoogle Scholar
  21. 21.
    Zhou WZ, Huang PJJ, Ding JS, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139(11):2627–2640CrossRefGoogle Scholar
  22. 22.
    Wang YH, Bao L, Liu ZH, Pang DW (2011) Aptamer biosensor based on fluorescence resonance energy transfer from Upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83(21):8130–8137CrossRefGoogle Scholar
  23. 23.
    Yang SH, Zhang FF, Liang QL, Wang ZH (2018) A three-dimensional graphene-based ratiometric signal amplification aptasensor for MUC1 detection. Biosens Bioelectron 120:85–92CrossRefGoogle Scholar
  24. 24.
    Cho EJ, Lee JW, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2:241–264CrossRefGoogle Scholar
  25. 25.
    Weng X, Neethirajan S (2017) Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Microchim Acta 184(11):4545–4552CrossRefGoogle Scholar
  26. 26.
    Sakai W, Swisher EM, Karlan BY, Agarwal MK, Higgins J, Friedman C, Villegas E, Jacquemont C, Farrugia DJ, Couch FJ, Urban N, Taniguchi T (2008) Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451(7182):1116–1120CrossRefGoogle Scholar
  27. 27.
    Wang YJ, Farrell N, Burgess JD (2001) Direct evidence for preassociation preceding covalent binding in the reaction of cis-[Pt(NH3)(2)(H2O)(2)](2+) with surface immobilized oligonucleotides. J Am Chem Soc 123(23):5576–5577CrossRefGoogle Scholar
  28. 28.
    Elmroth SKC, Lippard SJ (1995) Surface and electrostatic contributions to DNA-promoted reactions of platinum(ii) complexes with short oligonucleotides - a kinetic-study. Inorg Chem 34(21):5234–5243CrossRefGoogle Scholar
  29. 29.
    Fan DQ, Zhai QF, Zhou WJ, Zhu XQ, Wang EK, Dong SJ (2016) A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation. Biosens Bioelectron 85:771–776CrossRefGoogle Scholar
  30. 30.
    Sang FM, Liu J, Zhang X, Pan JX (2018) An aptamer-based colorimetric Pt(II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim Acta 185(5):267CrossRefGoogle Scholar
  31. 31.
    Cai S, Tian XK, Sun LL, Hu HH, Zheng SR, Jiang HD, Yu LS, Zeng S (2015) Platinum(II)-oligonucleotide coordination based Aptasensor for simple and selective detection of platinum compounds. Anal Chem 87(20):10542–10546CrossRefGoogle Scholar
  32. 32.
    Bing T, Yang XJ, Mei HC, Cao ZH, Shangguan DH (2010) Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories. Biorg Med Chem 18(5):1798–1805CrossRefGoogle Scholar
  33. 33.
    Mei HC, Bing T, Qi C, Zhang N, Liu XJ, Chang TJ, Yan JL, Shangguan D (2013) Rational design of Hg2+ controlled streptavidin-binding aptamer. Chem Commun 49(2):164–166CrossRefGoogle Scholar
  34. 34.
    Kojima E, Kai M, Ohkura Y, Ohba Y (1993) Phenylglyoxal and glyoxal as fluorogenic reagents selective for N-terminal tryptophan-containing peptides. Anal Chim Acta 280(1):157–162CrossRefGoogle Scholar
  35. 35.
    Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268CrossRefGoogle Scholar
  36. 36.
    Cai S, Cao ZJ, Lau CW, Lu JZ (2014) Label-free technology for the amplified detection of microRNA based on the allosteric hairpin DNA switch and hybridization chain reaction. Analyst 139(22):6022–6027CrossRefGoogle Scholar
  37. 37.
    Cho S, Park L, Chong R, Kim YT, Lee JH (2014) Rapid and simple G-quadruplex DNA aptasensor with guanine chemiluminescence detection. Biosens Bioelectron 52:310–316CrossRefGoogle Scholar
  38. 38.
    Wang X, Lau C, Kai M, Lu JZ (2013) Hybridization chain reaction-based instantaneous derivatization technology for chemiluminescence detection of specific DNA sequences. Analyst 138(9):2691–2697CrossRefGoogle Scholar
  39. 39.
    Moreno-Gordaliza E, Giesen C, Lazaro A, Esteban-Fernandez D, Humanes B, Canas B, Panne U, Tejedor A, Jakubowski N, Gomez-Gomez MM (2011) Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies. Anal Chem 83(20):7933–7940CrossRefGoogle Scholar
  40. 40.
    Martincic A, Cemazar M, Sersa G, Kovac V, Milacic R, Scancar J (2013) A novel method for speciation of Pt in human serum incubated with cisplatin, oxaliplatin and carboplatin by conjoint liquid chromatography on monolithic disks with UV and ICP-MS detection. Talanta 116:141–148CrossRefGoogle Scholar
  41. 41.
    Asimellis G, Michos N, Fasaki I, Kompitsas M (2008) Platinum group metals bulk analysis in automobile catalyst recycling material by laser-induced breakdown spectroscopy. Spectrochim Acta B At Spectrosc 63(11):1338–1343CrossRefGoogle Scholar
  42. 42.
    Hernandez-Santos D, Gonzalez-Garcia MB, Costa-Garcia A (2005) Effect of metals on silver electrodeposition - Application to the detection of cisplatin. Electrochim Acta 50(9):1895–1902CrossRefGoogle Scholar
  43. 43.
    Yang HL, Cui HL, Wang LG, Yan L, Qian Y, Zheng XE, Wei W, Zhao J (2014) A label-free G-quadruplex DNA-based fluorescence method for highly sensitive, direct detection of cisplatin. Sensors Actuators B Chem 202:714–720CrossRefGoogle Scholar
  44. 44.
    Ruttkay-Nedecky B, Skalickova S, Kremplova M, Nejdl L, Kudr J, Hynek D, Novotna M, Labuda J, Adam V, Kizek R (2015) Formation of G-quadruplex and its utilizing for an automated spectrometric detection of cisplatin. Int J Electrochem Sci 10(5):3973–3987Google Scholar
  45. 45.
    Materon EM, Wong A, Klein SI, Liu JW, Sotomayor MDPT (2015) Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochim Acta 158:271–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Sheng Cai
    • 1
  • Ying Zhou
    • 2
  • Jiawei Ye
    • 1
  • Ruizhe Chen
    • 1
  • Lianli Sun
    • 1
  • Jianzhong Lu
    • 2
  • Cheulhee Jung
    • 3
    Email author
  • Su Zeng
    • 1
    Email author
  1. 1.Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug ResearchZhejiang UniversityHangzhouChina
  2. 2.School of PharmacyFudan UniversityShanghaiChina
  3. 3.Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea

Personalised recommendations