Advertisement

Microchimica Acta

, 186:510 | Cite as

Magnetic cucurbit[6]uril-based hypercrosslinked polymers for efficient enrichment of ubiquitin

  • Dandan Jiang
  • Zheng Li
  • Qiong JiaEmail author
Original Paper
  • 70 Downloads

Abstract

The design and preparation of magnetic cucurbit[6]uril hypercrosslinked with polymers are described. The materials have a large specific surface, abundant mesopores and cavities, and display superparamagnetism. They were applied to the enrichment of ubiquitinated peptides from standard protein digests. Following desorption with 0.15% TFA, the peptides were quantified by MALDI-TOF MS. The method has a detection limit of 2 fmol·μL−1 and a mass ratio selectivity of 1:5000 as shown for ubiquitin and bovine serum albumin. The materials enable selective capture of ubiquitinated peptides from genuine samples comprising of oyster mushroom and human serum. This demonstrates their potential for the analysis of low-level ubiquitin in complex samples.

Graphical abstract

Schematic presentation for the synthesis of magnetic cucurbit[6]urils hypercrosslinked polymers (MagCB[6]-HCPs).

Keywords

Proteomics Trypsin Solid phase extraction MALDI-TOF MS Adsorbent Preconcentration Ovalbumin Bovine serum albumin Human serum Oyster mushroom 

Notes

Acknowledgements

This work was financially supported by State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, China (2019-4).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3507_MOESM1_ESM.docx (319 kb)
ESM 1 (DOCX 319 kb)

References

  1. 1.
    Ernst A, Avvakumov G, Tong J, Fan Y, Zhao Y, Alberts P (2013) A strategy for modulation of enzymes in the ubiquitin system. Science 339:590–595CrossRefGoogle Scholar
  2. 2.
    Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693CrossRefGoogle Scholar
  3. 3.
    Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397CrossRefGoogle Scholar
  4. 4.
    Kulathu Y, Komander D (2012) Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523CrossRefGoogle Scholar
  5. 5.
    Beaudette P, Popp O, Dittmar G (2016) Proteomic techniques to probe the ubiquitin landscape. Proteomics 16:273–287CrossRefGoogle Scholar
  6. 6.
    Hershko A, Eytan E, Ciechanover A, Haas AL (1982) Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells-relationship to the breakdown of abnormal proteins. J Biol Chem 257:13964–13970PubMedGoogle Scholar
  7. 7.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefGoogle Scholar
  8. 8.
    Shrivas K, Wu HF (2008) Modified silver nanoparticle as a hydrophobic affinity probe for analysis of peptides and proteins in biological samples by using liquid-liquid microextraction coupled to ap-maldi-ion trap and MALDI-TOF mass spectrometry. Anal Chem 80:2583–2589CrossRefGoogle Scholar
  9. 9.
    Wu HF, Kailasa SK, Shastri L (2010) Electrostatically self-assembled azides on zinc sulfide nanoparticles as multifunctional nanoprobes for peptide and protein analysis in MALDI-TOF MS. Talanta 82:540–547CrossRefGoogle Scholar
  10. 10.
    Lee JW, Samal S, Selvaplam N, Kim HJ, Kim K (2003) Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res 36:621–630CrossRefGoogle Scholar
  11. 11.
    Jon SY, Selvapalam N, Oh DH, Kang JK, Kim SY, Jeon YJ (2003) Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J Am Chem Soc 125:10186–10187CrossRefGoogle Scholar
  12. 12.
    Mei L, Wang L, Yuan LY, An SW, Zhao YL, Chai ZF (2015) Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks. Chem Commun 51:11990–11993CrossRefGoogle Scholar
  13. 13.
    Yeom J, Kim SJ, Jung H, Namkoong H, Yang J, Hwang BW (2015) Supramolecular hydrogels for long-term bioengineered stem cell therapy. Adv Healthcare Mater 4:237–244CrossRefGoogle Scholar
  14. 14.
    Park KM, Yang JA, Jung H, Yeom J, Park JS, Park KH (2012) In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 6:2960–2968CrossRefGoogle Scholar
  15. 15.
    Heo SW, Choi TS, Park KM, Ko YH, Kim SB, Kim K (2011) Host-guest chemistry in the gas phase: selected fragmentations of CB[6]peptide complexes at lysine residues and its utility to probe the structures of small proteins. Anal Chem 83:7916–7923CrossRefGoogle Scholar
  16. 16.
    Lee JW, Heo SW, Lee SJC, Ko JY, Kim H, Kim HI (2013) Probing conformational changes of ubiquitin by host-guest chemistry using electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 24:21–29CrossRefGoogle Scholar
  17. 17.
    Jiang DD, Li XQ, Jia Q (2018) Multilayer cucurbit[6]uril-based magnetic nanoparticles prepared by host-guest interaction: remarkable adsorbent for low density lipoprotein removal from plasma. Chem Eur J 24:2242–2248CrossRefGoogle Scholar
  18. 18.
    Zhang C, Kong R, Wang X, Xu Y, Wang F, Ren W (2017) Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon 114:608–618CrossRefGoogle Scholar
  19. 19.
    Zhang YH, Li YD, Wang F, Zhao Y, Zhang C, Wang XY (2014) Hypercrosslinked microporous organic polymer networks derived from silole-containing building blocks. Polymer 55:5746–5750CrossRefGoogle Scholar
  20. 20.
    Tan L, Tan B (2017) Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46:3322–3356CrossRefGoogle Scholar
  21. 21.
    Liu Y, Fan X, Jia X, Chen X, Zhang A, Zhan B (2017) Preparation of magnetic hyper-cross-linked polymers for the efficient removal of antibiotics from water. ACS Sustain Chem Eng 6:210–222CrossRefGoogle Scholar
  22. 22.
    Li XM, Chen G, Ma JT, Jia Q (2019) Pyrrolidinone-based hypercrosslinked polymers for reversible capture of radioactive iodine. Sep Purif Technol 210:995–1000CrossRefGoogle Scholar
  23. 23.
    Pang F, He MY, Ge JP (2015) Controlled synthesis of Fe3O4/ZIF-8 nanoparticles for magnetically separable nanocatalysts. Chem Eur J 21:6879–6887CrossRefGoogle Scholar
  24. 24.
    Deng YH, Qi DW, Deng CH, Zhang XM, Zhao DY (2008) Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc 130:28–29CrossRefGoogle Scholar
  25. 25.
    Jiang DD, Song NZ, Li XQ, Ma JT, Jia Q (2017) Highly selective enrichment of phosphopeptides by on-chip indium oxide functionalized magnetic nanoparticles coupled with MALDI-TOF MS. Proteomics 17:1700213CrossRefGoogle Scholar
  26. 26.
    Qi RF, Zhou X, Li XQ, Ma JT, Jia Q (2014) Rapid identification of synthetic colorants in food samples by using indium oxide nanoparticle-functionalized porous polymer monolith coupled with HPLC-MS/MS. Analyst 139:6168–6177CrossRefGoogle Scholar
  27. 27.
    Ma ZY, Guan YP, Liu HZ (2006) Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. J Magn Magn Mater 301:469–477CrossRefGoogle Scholar
  28. 28.
    Gregorio-Jauregui KM, Alvarez SAC, Salinas JER, Saade H, Martinez JL, Ljpez RG (2014) Extraction and immobilization of SA-alpha-2,6-gal receptors on magnetic nanoparticles to study receptor stability and interaction with sambucus nigra lectin. Appl Biochem Biotechnol 172:3721–3735CrossRefGoogle Scholar
  29. 29.
    Qiao SL, Huang W, Wang T, Du B, Chen XN, Hameed A (2017) Multifunctional porous organic polymers embedded with magnetic nanoparticles. J Mater Chem A 5:2981–2986CrossRefGoogle Scholar
  30. 30.
    Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030CrossRefGoogle Scholar
  31. 31.
    Li JH, Hou YH, Chen XY, Ding XW, Liu Y, Shen XK (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064CrossRefGoogle Scholar
  32. 32.
    Chatterjee D, Ytterberg AJ, Son SU, Loo JA, Garrell RL (2010) Integration of protein processing steps on a droplet microfluidics platform for MALDI-MS analysis. Anal Chem 82:2095–2101CrossRefGoogle Scholar
  33. 33.
    Uzzaman A, Shang Z, Qiao Z, Cao CX, Xiao H (2018) Graphene and graphene oxide as a solid matrix for extraction of membrane and membrane-associated proteins. Microchim Acta 185:123–133CrossRefGoogle Scholar
  34. 34.
    Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM (2017) Polymeric sorbents modified with gold and silver nanoparticles for solid-phase extraction of proteins followed by MALDI-TOF analysis. Microchim Acta 184:1683–1690CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ChemistryJilin UniversityChangchunChina

Personalised recommendations