Microchimica Acta

, 186:435 | Cite as

An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement

  • Raja Chinnappan
  • Razan AlZabn
  • Khalid M. Abu-Salah
  • Mohammed ZourobEmail author
Original Paper


The high-affinity region of a truncated aptamer was applied to the development of a sensitive method for the determination of microcystin-LR (MC-LR) using competitive displacement and molecular beacons. In this assay, the fluorophore and quencher labelled complementary sequences of the aptamer are hybridized with the truncated aptamer to form a fluorophore-quencher pair. In the presence of MC-LR, the aptamer duplex dissociates, and the fluorophore-quencher pair is separated. This turn leads to an increase in the yellow fluorescence which is best measured at excitation/emission wavelengths of 555/580 nm. One of the truncated aptamers showed a 50-fold increase in the affinity (0.93 nM) compared to the wild type aptamer (50 nM). The truncated sequence shows considerable cross-reactivity with L congeners but none with other congeners. The assay works in 0.5 to 200 nM MC-LR concentration range. It was applied to spiked tap water samples and gave recoveries around 95 ± 5%.

Graphical abstract

Schematic representation of a method for determination of microcystin-LR via fluorescence that is induced by competitive displacement of complementary DNA strands in a truncated dsDNA aptamer.


Aptasensor SELEX Fluorescence assay Marine toxins Microcystin-LR Cyanobacterial toxins Aptamer truncation Blue-green algae Harmful algae Graphene oxide 


Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3504_MOESM1_ESM.docx (40 kb)
ESM 1 (DOCX 40 kb)


  1. 1.
    Oberholster PJ, Botha AM, Grobbelaar JU (2004) Microcystis aeruginosa: source of toxic microcystins in drinking water, Afr J Biotechnol, 3: 159–168CrossRefGoogle Scholar
  2. 2.
    Krishnamurthy K, Carmichael WW, Sarver EW (1986) Toxic peptides from freshwater cyanobacteria (blue-green algae). I. Isolation, purification and characterization of peptides from Microcystis aeruginosa and Anabaena flos-aquae. Toxicon 24:865–873CrossRefGoogle Scholar
  3. 3.
    Botes DP, Wessels PL, Kruger H, MTC R, Santikarn S, Smith RJ, Barna JCJ, Williams DH (1985) Structural studies on cyanoginosins-LR,-YR,-YA, and-YM, peptide toxins from Microcystis aeruginosa. J Chem Soc Perkin Trans 1:2747–2748CrossRefGoogle Scholar
  4. 4.
    Hooser SB, Beasley VR, Basgall EJ, Carmichael WW, Haschek WM (1990) Microcystin-LR-induced ultrastructural changes in rats. Vet Pathol 27:9–15CrossRefGoogle Scholar
  5. 5.
    Yoshizawa S, Matsushima R, Watanabe MF, Harada KI, Ichihara A, Carmichael WW, Fujiki H (1990) Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol 116:609–614CrossRefGoogle Scholar
  6. 6.
    Matsushima RN, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118:420–424CrossRefGoogle Scholar
  7. 7.
    Hydrocarbons PA (1998) Guidelines for drinking water quality, addendum to Vol. 2, health Crieteria and other supporting information. World Health Organization, Geneva, pp 123–152Google Scholar
  8. 8.
    Codd GA, Jefferies TM, Keevil CW, Potter E (1994) Detection methods for cynobacterial toxins, Elsevier. ISBN: 978-1-85573-802-7CrossRefGoogle Scholar
  9. 9.
    Li L, Jia R, Liu Y, Zhang H (2011) Detection of microcystin-producing cyanobacteria in a reservoir by whole cell quantitative PCR. Pro Environ Sci 10:2272–2279CrossRefGoogle Scholar
  10. 10.
    Rapala J, Erkomaa K, Kukkonen J, Sivonen K, Lahti K (2002) Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography–UV detection and enzyme-linked immunosorbent assay: comparison of methods. Anal Chim Acta 466:213–231CrossRefGoogle Scholar
  11. 11.
    Parker CH, Stutts WL, De Grasse SL (2015) Development and validation of a liquid chromatography-tandem mass spectrometry method for the quantitation of microcystins in blue-green algal dietary supplements. J Agric Food Chem 63:10303–10312CrossRefGoogle Scholar
  12. 12.
    McElhiney J, Lawton LA, Porter AJ (2000) Detection and quantification of microcystins (cyanobacterial hepatotoxins) with recombinant antibody fragments isolated from a naive human phage display library. FEMS Microbiol Lett 193:83–88PubMedGoogle Scholar
  13. 13.
    Shamsollahi HR, Alimohammadi M, Nabizadeh R, Nazmara S, Mahvi AH (2015) Measurement of microcystin -LR in water samples using improved HPLC method. Glob J Heal Sci 7:66–70Google Scholar
  14. 14.
    Ruscito A, DeRosa MC (2014) Small-molecule binding aptamers: selection strategies, characterization, and applications. Front Chem 4:14Google Scholar
  15. 15.
    Zhou W, Ding J, Liu J (2016) A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ sensing. Nucl Acid Res 44:10377–10385CrossRefGoogle Scholar
  16. 16.
    Alhadrami H, Chinnappan R, Eissa S, Rahamn AA, Zourob M (2017) High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Anal Biochem 525:78–84CrossRefGoogle Scholar
  17. 17.
    Chinnappan R, AlAmer S, Eissa S, Rahamn AA, Abu Salah KM, Zourob M (2017) Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Microchim Acta 185:61CrossRefGoogle Scholar
  18. 18.
    Kwon YS, Raston NHA, Gu MB (2014) An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Chem Com 50:40–42CrossRefGoogle Scholar
  19. 19.
    Nadal P, Svobodova M, Mairal T, O'Sullivan CK (2013) Probing high-affinity 11-mer DNA aptamer against Lup an 1 (β-conglutin). Anal Bioanal Chem 405:9343–9349CrossRefGoogle Scholar
  20. 20.
    Ng A, Chinnappan R, Eissa S, Liu H, Tlili C, Zourob M (2012) Selection, characterization, and biosensing application of high affinity congener-specific microcystin-targeting aptamers. Environ Sci Technol 46:10697–10703CrossRefGoogle Scholar
  21. 21.
    Cowperthwaite MC, Ellington AD (2008) Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol 67:95–102CrossRefGoogle Scholar
  22. 22.
    Vorobyeva M, Vorobjev P, Venyaminova A (2016) Multivalent aptamers: versatile tools for diagnostic and therapeutic applications. Molecules 21:1613CrossRefGoogle Scholar
  23. 23.
    Liu L, Zhou J, Wilkinson JS, Hua P, Song B, Shi H (2017) Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: optimization and analysis. Sci Rep 7:3655CrossRefGoogle Scholar
  24. 24.
    Zhang G, Li C, Wu SZQ (2018) Label-free aptamer-based detection of microcystin-LR using a microcantilever array biosensor. Senors Actuators B Chem 260:42–47CrossRefGoogle Scholar
  25. 25.
    Murphy C, Stack E, Krivelo S, McPartlin DA, Byrne B, Greef C, Lochhead MJ, Husar G, Devlin S, Elliott CT, O'Kennedy RJ (2015) Detection of the cyanobacterial toxin, microcystin-LR, using a novel recombinant antibody-based optical-planar waveguide platform. Biosens Bioelectron 67:708–714CrossRefGoogle Scholar
  26. 26.
    An J, Carmichael WW (1994) Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon 23:1495–1507CrossRefGoogle Scholar
  27. 27.
    Bouaıcha N, Maatouk I, Vincent G, Levi Y (2002) A colorimetric and fluorometric microplate assay for the detection of microcystin-LR in drinking water without preconcentration. Food Chem Toxicol 40:1677–1683CrossRefGoogle Scholar
  28. 28.
    Lawton LA, Edwards C, Codd GA (1994) Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst 119:1525–1530CrossRefGoogle Scholar
  29. 29.
    Nagata S, Soutome H, Tsutsumi T, Hasegawa A, Sekijima M, Sugamata M, Harada KI, Suganuma M, Ueno Y (1995) Novel monoclonal antibodies against microcystin and their protective activity for hepatotoxicity. Nat Toxins 3:78–86CrossRefGoogle Scholar
  30. 30.
    Metcalf J, Codd GA (2003) Analysis of cyanobacterial toxins by immunological methods. Chem Res Toxicol 16:103–112CrossRefGoogle Scholar
  31. 31.
    Perron MC, Qiu B, Boucher N, Bellemare F, Juneau P (2012) Use of chlorophyll a fluorescence to detect the effect of microcystins on photosynthesis and photosystem II energy fluxes of green algae. Toxicon 59:567–577CrossRefGoogle Scholar
  32. 32.
    Hu C, Gan N, He Z, Song L (2008) A novel chemiluminescent immunoassay for microcystin (MC) detection based on gold nanoparticles label and its application to MC analysis in aquatic environmental samples. Int J Environ Anal Chem 88:267–277CrossRefGoogle Scholar
  33. 33.
    Zhang W, Han C, Jia B, Saint C, Nadagouda M, Falaras P, Sygellou L, Vogiazi V, Dionysiou DD (2017) A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochim Acta 236:319–327CrossRefGoogle Scholar
  34. 34.
    Sung HJ, Choi S, Lee JW, Ok CY, Bae YS, Kim YH, LeeW HK, Kim IH (2014) Inhibition of human neutrophil activity by an RNA aptamer bound to interleukin-8. Biomaterials 35:578–589CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Raja Chinnappan
    • 1
  • Razan AlZabn
    • 1
  • Khalid M. Abu-Salah
    • 2
  • Mohammed Zourob
    • 1
    • 3
    Email author
  1. 1.Department of ChemistryAlfaisal UniversityRiyadhSaudi Arabia
  2. 2.Department of Nanomedicine, King Abdullah International Medical Research Center, Ministry of the National Guard-Health AffairsRiyadh/ King Saud bin Abdulaziz University for Health SciencesRiyadhSaudi Arabia
  3. 3.King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia

Personalised recommendations