Microchimica Acta

, 186:401 | Cite as

Surface-enhanced Raman spectroscopic single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles

  • Shijia Wu
  • Nuo DuanEmail author
  • Mofei Shen
  • Jing Wang
  • Zhouping WangEmail author
Original Paper


A method is described for single-step detection of V. parahaemolyticus in seafood via aptamer-based SERS. A gold-coated polydimethylsiloxane (PDMS) film was used for the enhancement of Raman scattering. The Raman reporter 4-mercaptobenzoic acid was linked to aptamer modified gold nanoparticles (AuNPs) served as a signalling probe. The negatively charged signalling probe was assembled onto the cysteamine-modified Au-PDMS film through electrostatic adsorption. On addition of V. parahaemolyticus, it will be bound by the aptamer as a biorecognition element, and this leads to the dissociation of the signalling probe from the Au-PDMS film. Hence, the Raman signal (at 1592 cm−1) decreases. The assay has a wide linear response that covers the 1.2 × 102 to 1.2 × 106 cfu·mL−1 V. parahaemolyticus concentration range. The detection limit is 12 cfu·mL−1. The method was successfully applied to the determination of V. parahaemolyticus in oyster and salmon samples.

Graphical abstract

Schematic presentation of a surface-enhanced Raman spectroscopic method for single step detection of Vibrio parahaemolyticus using gold coated polydimethylsiloxane as the active substrate and aptamer modified gold nanoparticles. This solid substrate simplified the analysis procedures and enhanced the sensitivity.


Food-borne pathogen Spectroscopy Biorecognition 4-Mercaptobenzoic acid Oyster Salmon Food analysis 



This work was partially supported by the Key Research and Development Program of Jiangsu Province BE2016306, National Key Research and Development Program of China (2018YFC1602905), National Natural Science Fund of China (NSFC 31772086, 31871721), Jiangsu Agriculture Science and Technology Innovation Fund (CX(18)2025) and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3499_MOESM1_ESM.docx (828 kb)
ESM 1 (DOCX 828 kb)


  1. 1.
    Mccarter LL (1999) The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol 1:51–57PubMedGoogle Scholar
  2. 2.
    Su YC, Liu C (2007) Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol 24:549–558CrossRefGoogle Scholar
  3. 3.
    Wang Y, Liu SJ, Pu QK, Li YX, Wang XX, Jiang Y, Yang DN, Yang Y, Yang J, Sun C (2018) Rapid identification of Staphylococcus aureus, Vibrio parahaemolyticus and Shigella sonnei in foods by solid phase microextraction coupled with gas chromatography–mass spectrometry. Food Chem 262:7–13CrossRefGoogle Scholar
  4. 4.
    Wu W, Zhou M, He H, Liu CZ, Li PF, Wang M, Liu Y, Hao X, Fang Z (2018) A sensitive aptasensor for the detection of Vibrio parahaemolyticus. Sensor Actuat B-Chem 272:550–558CrossRefGoogle Scholar
  5. 5.
    Wang Y, Shen X, Gu RR, Shi YF, Tian LL (2015) Application of a rapid method for detecting Vibrio Parahaemolyticus in seafood. J Food Saf 35:26–31CrossRefGoogle Scholar
  6. 6.
    Kumar BK, Raghunath P, Devegowda D, Deekshit VK, Venugopal MN, Karunasagar I (2011) Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int J Food Microbiol 145:244–249CrossRefGoogle Scholar
  7. 7.
    Kong C, Wang Y, Fodjo EK, Yang GX, Han F, Shen XS (2018) Loop-mediated isothermal amplification for visual detection of Vibrio parahaemolyticus using gold nanoparticles. Microchim Acta 185:35CrossRefGoogle Scholar
  8. 8.
    Wu SJ, Wang YQ, Duan N, Ma HL, Wang ZP (2015) Colorimetric aptasensor based on enzyme for the detection of Vibrio parahemolyticus. J Agr Food Chem 63:7849–7854CrossRefGoogle Scholar
  9. 9.
    Duan N, Wu S, Zhang H, Zou Y, Wang Z (2018) Fluorometric determination of Vibrio parahaemolyticus using an F0F1-ATPase-based aptamer and labeled chromatophores. Microchim Acta 185:304CrossRefGoogle Scholar
  10. 10.
    Wu SJ, Duan N, Shi Z, Fang CC, Wang ZP (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86:3100–3107CrossRefGoogle Scholar
  11. 11.
    Lane LA, Qian XM, Nie SM (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115:10489–10529CrossRefGoogle Scholar
  12. 12.
    Lee HK, Lee YH, Phang IY, Wei JQ, Miao YE, Liu TX et al (2014) Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. Angew Chem Int Ed 53:5054–5058Google Scholar
  13. 13.
    Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540CrossRefGoogle Scholar
  14. 14.
    Sundaram J, Park B, Kwon Y, Lawrence KC (2013) Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens. Int J Food Microbiol 167:67–73CrossRefGoogle Scholar
  15. 15.
    Kowalska AA, Kaminska A, Adamkiewicz W, Witkowska E, Tkacz M (2015) Novel highly sensitive Cu-based SERS platforms for biosensing applications. J Raman Spectrosc 46:428–433CrossRefGoogle Scholar
  16. 16.
    Ravindranath SP, Wang YL, Irudayaraj J (2005) SERS driven cross-platform based multiplex pathogen detection. Sensor Actuat B-Chem 152:183–190CrossRefGoogle Scholar
  17. 17.
    Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyaci IH (2011) SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for Escherichia coli enumeration. Analyst 136:740–748CrossRefGoogle Scholar
  18. 18.
    Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF (2005) Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem 77:6147–6154CrossRefGoogle Scholar
  19. 19.
    Duan N, Chang BY, Zhang H, Wang ZP, Wu SJ (2016) Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int J Food Microbiol 218:38–43CrossRefGoogle Scholar
  20. 20.
    Duan N, Shen MF, Wu SJ, Zhao CX, Ma XY, Wang ZP (2017) Graphene oxide wrapped Fe3O4@Au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Microchim Acta 184:2563–2660CrossRefGoogle Scholar
  21. 21.
    Pan ZH, Wang TC, Sun SF, Zhao BX (2016) Durable microstructured surfaces: combining electrical conductivity with superoleophobicity. ACS Appl Mater Inter 8:1795–1804CrossRefGoogle Scholar
  22. 22.
    Mao HY, Wu WG, She DD, Sun GC, Lv PP, Xu J (2014) Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique. Small 10:127–134CrossRefGoogle Scholar
  23. 23.
    Lu G, Li H, Zhang H (2011) Nanoparticle-coated PDMS elastomers for enhancement of Raman scattering. Chem Commun 47:8560–8562CrossRefGoogle Scholar
  24. 24.
    Zhao H, Hasi W, Bao L, Liu YP, Han SQGW, Lin DY (2018) A silver self-assembled monolayer-decorated polydimethylsiloxane flexible substrate for in situ SERS detection of low-abundance molecules. J Raman Spectrosc 49:1469–1477CrossRefGoogle Scholar
  25. 25.
    Qian C, Guo QH, Xu MM, Yuan YX, Yao JL (2015) Improving the SERS detection sensitivity of aromatic molecules by a PDMS-coated Au nanoparticle monolayer film. RSC Adv 5:53306–53312CrossRefGoogle Scholar
  26. 26.
    Duan N, Wu SJ, Chen XJ, Huang YK, Wang ZP (2012) Selection and identification of a DNA aptamer targeted to Vibrio parahaemolyticus. J Agr Food Chem 60:4034–4038CrossRefGoogle Scholar
  27. 27.
    Simpson TRE, Tabatabaian Z, Jeynes C, Parbhoo B, Keddie JL (2004) Influence of interfaces on the rates of crosslinking in poly (dimethyl siloxane) coatings. J Polym Sci Part A: Polym Chem 42:1421–1431CrossRefGoogle Scholar
  28. 28.
    Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34:21–25CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiChina
  3. 3.China Rural Technology Development CenterBeijingChina
  4. 4. International Joint Laboratory on Food Safety, Jiangnan UniversityWuxiChina

Personalised recommendations