Advertisement

Microchimica Acta

, 186:434 | Cite as

One-dimensional NiFe2O4 nanorods modified with sulfur-rich spherical carbon nanoparticles for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid

  • Rajesh Madhuvilakku
  • Shakkthivel PiramanEmail author
Original Paper

Abstract

The work reports an easy way to prepare sulfur doped-carbon nanoparticles on a NiFe2O4 support. By placing the nanocomposite on a glassy carbon electrode (GCE), a sensor is obtained for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The morphology, structural and chemical composition of the nanocomposite was characterized by various surface and physicochemical techniques, and its electrochemical properties were also examined. Modified GCE showed resolved electrocatalytic oxidation activity of AA, DA and UA with well separated peaks at 242 mV, 111 mV and 353 mV (vs. SCE). Under optimized conditions, the sensor has wide linear ranges and detection limits as low as 45, 25 and 17 nM for AA, DA and UA, respectively. The outstanding electrocatalytic performance of this GCE is attributed to the synergistic effect, defined size and unique morphology of the nanocomposite. This provides a benign micro-environment for convenient conjugation of biomolecules and improved charge transfer between the electrode and biomolecules for effective oxidation. The sensor was applied to the determination of AA in commercial vitamin C tablets, DA in injections, and UA in human urine. It showed recoveries in the range of 99.7–102.2%.

Graphical abstract

Schematic presentation of a method for synthesis of NiFe2O4-SDCNPs hybrid nanocomposite and its application for the electrochemical individual and simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA).

Keywords

Modified electrode Electrochemical sensor Simultaneous determination Ascorbic acid Dopamine Uric acid 

Notes

Acknowledgements

The authors Dr. P. Shakkthivel and Rajesh Madhuvilakku would like to thank the DST-SERB (File No. EMR/2015/001475) New Delhi, University Grants Commission (UGC), New Delhi for Rajiv Gandhi National Fellowship (RGNF) and RUSA-Phase 2.0 (Letter No. F.24-51/2014-U) for financial support. We are acknowledging the USIC, Alagappa University, Karaikudi for XRD and Raman studies.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3496_MOESM1_ESM.doc (3.4 mb)
ESM 1 (DOC 3.42 mb)

References

  1. 1.
    Ensafi A, Said F, Rezaei B, Allafchian AR (2014) NiFe2O4 nanoparticles decorated with MWCNTs as a selective and sensitive electrochemical sensor for the determination of epinephrine using differential pulse voltammetry. Anal Methods 6:6885–6892CrossRefGoogle Scholar
  2. 2.
    Li C, Wang X, Li S, Li Q, Xu J, Liu X, Liu C, Xu Y, Liu J, Li H, Guo P, Zhao XS (2017) Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries. Appl Surf Sci 416:308–317CrossRefGoogle Scholar
  3. 3.
    Wang B, Cao Y, Chen Y, Lai X, Peng J, Tu J, Li X (2017) Rapid synthesis of rGO conjugated hierarchical NiCo2O4hollow mesoporous nanospheres with enhanced glucose sensitivity. Nanotech 28:025501–025512CrossRefGoogle Scholar
  4. 4.
    Luo L, Li QXY, Ding Y, Wang X, Deng D, Xu Y (2010) Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sens Actuators B chem 145:293–298CrossRefGoogle Scholar
  5. 5.
    Shan A, Wu X, Lu J, Chen C, Wang R (2015) Phase formations and magnetic properties of single crystal nickel ferrite (NiFe2O4) with different morphologies. CrystEngComm 17:1603–1608CrossRefGoogle Scholar
  6. 6.
    Liu YL, Wang H, Yang Y, Liu ZM, Yang HF, Shen GL, Yu RQ (2004) Hydrogen sulfide sensing properties of NiFe2O4 nanopowder doped with noble metals. Sens Actuators B Chem 102:148–154CrossRefGoogle Scholar
  7. 7.
    Yang L, Xie Y, Zhao H, Wu X, Wang Y (2005) Preparation and gas-sensing properties of NiFe2O4semiconductor materials. Solid State Electron 49:1029–1033CrossRefGoogle Scholar
  8. 8.
    Luo L, Zhu L, Xu Y, Shen L, Wang X, Ding Y, Li Q, Deng D (2011) Hydrogen peroxide biosensor based on horseradish peroxidase immobilized on chitosan-wrapped NiFe2O4nanoparticles. Microchem Acta 174:55–61CrossRefGoogle Scholar
  9. 9.
    Nawale AB, Kanhe NS, Patil KR, Bhoraskar SV, Mathe VL, Das AK (2011) Magnetic properties of thermal plasma synthesized nanocrystalline nickel ferrite (NiFe2O4). J Alloys Compd 509:4404–4413CrossRefGoogle Scholar
  10. 10.
    Agrafiotis C, Zygogianni A, Pagkoura C, Kostoglou M, Konstandopoulos AG (2013) Hydrogen production via solar-aided water splitting thermochemical cycles with nickel ferrite: experiments and modeling. AICHE J 59:1213–1225CrossRefGoogle Scholar
  11. 11.
    Jaaffari GH, Rumaiz AK, Woicik JC, Shah SI (2012) Influence of oxygen vacancies on the electronic structure and magnetic properties of NiFe2O4 thin films. J Appl Phys 111:093906–093911CrossRefGoogle Scholar
  12. 12.
    Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvan C (2011) Synthesis and characterization of NiFe2O4 nanosheet via polymer assisted co-precipitation method. Mater Lett 65:483–485CrossRefGoogle Scholar
  13. 13.
    Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172:379–387CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949–16954CrossRefGoogle Scholar
  15. 15.
    Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, Kim E, Park J, Kim H (2015) Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron 63:325–330CrossRefGoogle Scholar
  16. 16.
    Luo J, Luo P, Xie M, Du K, Zhao B, Pan F, Fan P, Zeng F, Zhang Z, Liang G (2013) A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens Bioelectron 49:512–518CrossRefGoogle Scholar
  17. 17.
    Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy E, Milne WI (2012) A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene. Sensors 12:5996–6022CrossRefGoogle Scholar
  18. 18.
    Karikalan N, Velmurugan M, Chen SM, Karuppiah C, Al- Anazi KM, Ali MA, Lou BS (2016) Flame synthesis of nitrogen doped carbon for the oxygen reduction reaction and non-enzymatic methyl parathion sensor. RSC Adv 6:71507–71516CrossRefGoogle Scholar
  19. 19.
    Manivel P, Dhakshnamoorthy M, Balamurugan A, Ponpandian N, Mangalaraj D, Viswanathan C (2013) Conducting polyaniline-graphene oxide fibrous nanocomposites: preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Adv 3:14428–14437CrossRefGoogle Scholar
  20. 20.
    Hathoot AA, Hassan KM, Essa WA, Azzem MA (2017) Simultaneous determination of ascorbic acid, uric acid and dopamine at modified electrode based on hybrid nickel hexacyanoferrate/poly(1,5-diaminonaphthalene). J Iran Chem Soc 14:1789–1801CrossRefGoogle Scholar
  21. 21.
    Zou C, Zhong J, Li S, Wang H, Wang J, Yan B, Du Y (2017) Fabrication of reduced graphene oxide-bimetallic PdAu nanocomposites for the electrochemical determination of ascorbic acid, dopamine, uric acid and rutin. J Electroanal Chem 805:110–119CrossRefGoogle Scholar
  22. 22.
    Jiang J, Du X (2014) Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale 6:11303–11309CrossRefGoogle Scholar
  23. 23.
    Amin G, Asif MH, Zainelabdin A, Zaman S, Nur O, Willander M (2011) Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. J Nanomat 2011:1–9CrossRefGoogle Scholar
  24. 24.
    Quan B, Yu SH, Chung DY, Jin A, Park JH, Sung YE, Piao Y (2014) Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci Rep 4:1–6Google Scholar
  25. 25.
    Lin M, Tng L, Lim TY, Choo M, Zhang J, Tan HR, Bai SQ (2014) Hydrothermal synthesis of Octadecahedral hematite (α-Fe2O3) nanoparticles: an epitaxial growth from goethite (α-FeOOH). J Phys Chem C 118:10903–10910CrossRefGoogle Scholar
  26. 26.
    Desantis CJ, Sue AC, Bower MM, Skrabalak SE (2012) Seed-mediated co-reduction: a versatile route to architecturally controlled bimetallic nanostructures. ACS Nano 6:2617–2628CrossRefGoogle Scholar
  27. 27.
    Zhang JA, Langille MR, Mirkin CA (2010) Photomediated synthesis of silver triangular bipyramids and prisms: the effect of pH and BSPP. J Am Chem Soc 132:12502–12510CrossRefGoogle Scholar
  28. 28.
    Li ZQ, Lu CJ, Xia ZP, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695CrossRefGoogle Scholar
  29. 29.
    Ding H, Wei JS, Xiong HM (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6:13817–13823CrossRefGoogle Scholar
  30. 30.
    Ensafi AA, Jafari-Asl M, Rezaei B, Allafchian AR (2013) Simultaneous determination of guanine and adenine in DNA based on NiFe2O4 magnetic nanoparticles decorated MWCNTs as a novel electrochemical sensor using adsorptive stripping voltammetry. Sens Actuators BChem 177:634–642CrossRefGoogle Scholar
  31. 31.
    Ghosh K, Kumar M, Marubyama T, Ando Y (2010) Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon 48:191–200CrossRefGoogle Scholar
  32. 32.
    Uddin Md E, Kim NH, Kuila T, Lee SH, Hui D, Lee JH (2015) Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine. Composite Part B: Engg 79:649–659CrossRefGoogle Scholar
  33. 33.
    Sivakumar P, Ramesh R, Ramanand A, Ponnusamy S, Muthamizhchelvam C (2011) Preparation and properties of nickel ferrite (NiFe2O4) nanoparticles via sol–gel auto-combustion method. Mater Res Bull 46:2204–2207CrossRefGoogle Scholar
  34. 34.
    Wang J, Wang G, Wang H (2015) Flexible free-standing Fe2O3/graphene/carbon nanotubes hybrid films as anode materials for high performance lithium-ion batteries. Electrochim Acta 182:192–201CrossRefGoogle Scholar
  35. 35.
    Piraman S, Sundar S, Mariappan R, Kim YY, Min K (2016) Nanospheres and nanoleaves of γ-Fe2O3architecturing for magnetic and biomolecule sensing applications. Sens Actuators B Chem 234:386–393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science CampusAlagappa UniversityKaraikudiIndia

Personalised recommendations