Advertisement

Microchimica Acta

, 186:399 | Cite as

Silicon-doped carbon quantum dots with blue and green emission are a viable ratiometric fluorescent probe for hydroquinone

  • Yingnan Liu
  • Yuanyuan Cao
  • Tong Bu
  • Xinyu Sun
  • Taotao Zhe
  • Chen Huang
  • Siyu Yao
  • Li WangEmail author
Original Paper
  • 57 Downloads

Abstract

Silicon-doped carbon quantum dots (Si-CQDs) were employed to fabricate a ratiometric fluorometric probe that shows high selectivity for hydroquinone (HQ). The Si-CQDs were prepared through hydrothermal treatment of N-[3-(trimethoxysilyl)propyl]-ethylenediamine. If HQ is oxidized in a solution of the Si-CQDs, 1,4-benzoquinone will be formed which quenches the blue fluorescence (with excitation/emission peaks at 360/435 nm) of the Si-CQDs. Simultaneously, intense green fluorescence (with a emission peak at 513 nm) appears, probably due to the formation of n-π clathrates or of a quinone imine between 1,4-benzoquinone and amino groups on the surface of the Si-CQDs. The ratio of the green and blue fluorescence can be applied to the determination of HQ with a 0.077 μM detection limit. The analytical range extends from 1 to 40 μM.

Graphical abstract

Schematic of a silicon-doped carbon quantum dot-based ratiometric fluorescence probe with blue and green emission for the visual and fluorometric determination of hydroquinone.

Keywords

Carbon dots Visual detection N-[3-(Trimethoxysilyl)propyl]-ethylenediamine Benzoquinone 1,4-Dihydroxybenzene Water samples Cosmetics samples Hydrothermal reaction Optical probe Quantum yield 

Notes

Funding

This work was financially supported by the Fundamental Research Funds for the Northwest A&F University (Nos. Z111021601) and Talented Program (A279021724).

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Supplementary material

604_2019_3490_MOESM1_ESM.docx (481 kb)
ESM 1 (DOCX 480 kb)

References

  1. 1.
    Liu Y, Wang YM, Zhu WY, Zhang CH, Tang H, Jiang JH (2018) Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone. Anal Chim Acta 1012:60–65.  https://doi.org/10.1016/j.aca.2018.01.027 CrossRefPubMedGoogle Scholar
  2. 2.
    He YZ, Sun J, Feng DX, Chen HQ, Gao F, Wang L (2015) Graphene quantum dots: highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone. Biosens Bioelectron 74:418–422.  https://doi.org/10.1016/j.bios.2015.07.006 CrossRefPubMedGoogle Scholar
  3. 3.
    Liu YN, Wang QZ, Guo SW, Jia P, Shui YH, Yao SY et al (2018) Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sensors Actuators B Chem 275:415–421.  https://doi.org/10.1016/j.snb.2018.08.073 CrossRefGoogle Scholar
  4. 4.
    Jurica K, Karaconji IB, Segan S, Opsenica DM, Kremer D (2015) Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry. Arh Hig Rada Toksiko 66:197–202.  https://doi.org/10.1515/aiht-2015-66-2696 CrossRefGoogle Scholar
  5. 5.
    Scobbie E, Groves JA (1999) Determination of hydroquinone in air by high performance liquid chromatography. Ann Occup Hyg 43:131–141.  https://doi.org/10.1093/annhyg/43.2.131 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao LJ, Lv BQ, Yuan HY, Zhou ZD, Xiao D (2007) A sensitive chemiluminescence method for determination of hydroquinone and catechol. Sensors 7:578–588.  https://doi.org/10.3390/s7040578 CrossRefGoogle Scholar
  7. 7.
    Xu SX, Li JL, Li XM, Su M, Shi ZM, Zeng Y et al (2016) A chemiluminescence resonance energy transfer system composed of cobalt (II), luminol, hydrogen peroxide and CdTe quantum dots for highly sensitive determination of hydroquinone. Microchim Acta 183:667–673.  https://doi.org/10.1007/s00604-015-1707-1 CrossRefGoogle Scholar
  8. 8.
    Odumosu PO, TO E (2010) Identification and spectrophometric determination of hydroquinone levels in some cosmetic creams. Afr J Pharm Pharmaco 4:231–234.  https://doi.org/10.1007/s12325-010-0027-4 CrossRefGoogle Scholar
  9. 9.
    Khoshneviszadeh R, Bazzaz BSF, Housaindokht MR, Ebrahim-Habibi A, Rajabi O (2015) UV spectrophotometric determination and validation of hydroquinone in liposome. Iran J Pharm Res 14:473–478.  https://doi.org/10.3109/09637489709006968 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang HL, Hu QQ, Meng Y, Jin ZE, Fang ZL, Fu QR et al (2018) Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J Hazard Mater 353:151–157.  https://doi.org/10.1016/j.jhazmat.2018.02.029 CrossRefPubMedGoogle Scholar
  11. 11.
    Peng Y, Tang ZR, Dong YP, Che G, Xin ZF (2018) Electrochemical detection of hydroquinone based on MoS2/reduced graphene oxide nanocomposites. J Electroanal Chem 816:38–44.  https://doi.org/10.1016/j.jelechem.2018.03.034 CrossRefGoogle Scholar
  12. 12.
    Wang YP, Yue QL, Tao LX, Zhang C, Li CZ (2018) Fluorometric determination of hydroquinone by using blue emitting N/S/P-codoped carbon dots. Microchim Acta 185:550.  https://doi.org/10.1007/s00604-018-3082-1 CrossRefGoogle Scholar
  13. 13.
    Chen J, Gao YJ, Hu XY, Xu YL, Lu XQ (2019) Detection of hydroquinone with a novel fluorescence probe based on the enzymatic reaction of graphite phase carbon nitride quantum dots. Talanta 194:493–500.  https://doi.org/10.1016/j.talanta.2018.09.111 CrossRefPubMedGoogle Scholar
  14. 14.
    Lin ZY, Kuo YC, Chang CJ, Lin YS, Chiu TC, Hu CC (2018) Highly sensitive sensing of hydroquinone and catechol based on β-cyclodextrin-modified carbon dots. RSC Adv 8:19381–19388.  https://doi.org/10.1039/c8ra02813c CrossRefGoogle Scholar
  15. 15.
    Wei JR, Chen HY, Zhang W, Pan JX, Dang FQ, Zhang ZQ et al (2017) Ratiometric fluorescence for sensitive and selective detection of mitoxantrone using a MIP@rQDs@SiO2 fluorescence probe. Sensor Actuat B-Chem 244:31–37.  https://doi.org/10.1016/j.snb.2016.12.091 CrossRefGoogle Scholar
  16. 16.
    Zhang YR, Zhao ZM, Miao JY, Zhao BX (2016) A ratiometric fluorescence probe based on a novel FRET platform for imaging endogenous HOC1 in the living cells. Sensor Actuat B-Chem 229:408–413.  https://doi.org/10.1016/j.snb.2016.01.146 CrossRefGoogle Scholar
  17. 17.
    Zhang HQ, Huang YH, Lin XH, Lu FF, Zhang ZS, Hu ZB (2018) Lanthanum loaded graphitic carbon nitride nanosheets for highly sensitive and selective fluorescent detection of iron ions. Sensor Actuat B-Chem 255:2218–2222.  https://doi.org/10.1016/j.snb.2017.09.026 CrossRefGoogle Scholar
  18. 18.
    Cao BM, Yuan C, Liu BH, Jiang CL, Guan GJ, Han MY (2013) Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots. Anal Chim Acta 786:146–152.  https://doi.org/10.1016/j.aca.2013.05.015 CrossRefGoogle Scholar
  19. 19.
    Liao B, Lv H, Deng XT, He BQ, Liu QQ (2017) Spiropyran-modified silicon quantum dots with reversibly switchable photoluminescence. J Nanopart Res 19(265).  https://doi.org/10.1007/s11051-017-3974-8
  20. 20.
    Adegoke O, Nyokong T (2013) Fluorescence “turn on” probe for bromide ion using nanoconjugates of glutathione-capped CdTe@ZnS quantum dots with nickel tetraamino-phthalocyanine: characterization and size-dependent properties. J Photoch Photobio A 265:58–66.  https://doi.org/10.1016/j.jphotochem.2013.05.013 CrossRefGoogle Scholar
  21. 21.
    Huang H, Xu M, Gao Y, Wang GN, Su XG (2011) Water-soluble fluorescent conjugated polymer-enzyme hybrid system for the determination of both hydroquinone and hydrogen peroxide. Talanta 86:164–169.  https://doi.org/10.1016/j.talanta.2011.08.053 CrossRefPubMedGoogle Scholar
  22. 22.
    Guo XQ, Deng L, Wang JX (2013) Oligonucleotide-stabilized silver nanoclusters as fluorescent probes for sensitive detection of hydroquinone. RSC Adv 3:401–407.  https://doi.org/10.1039/c2ra21615a CrossRefGoogle Scholar
  23. 23.
    Yan X, Li HX, Zheng WS, Su XG (2015) Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem 87:8904–8909.  https://doi.org/10.1021/acs.analchem.5b02037 CrossRefPubMedGoogle Scholar
  24. 24.
    Ganesh K, Balraj C, Satheshkumar A, Elango KP (2014) Spectroscopic studies on the formation of charge transfer complexes of L-phenylalanine with 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones in aqueous medium. Arab J Chem 1011:2908–2912.  https://doi.org/10.1016/j.arabjc.2014.10.020 CrossRefGoogle Scholar
  25. 25.
    Geffken D, Salem H (2006) Spectrofluorimetric study of the charge-transfer complexation of certain fluoroquinolones with 2,3,5,6-tetrafluoro-p-bezoquinone. Am J Applied Sci 3:1952–1960.  https://doi.org/10.3844/ajassp.2006.1952.1960 CrossRefGoogle Scholar
  26. 26.
    Du LM, Xu QQ, Yuan JM (2003) Fluorescence spectroscopy determination of fluoroquinolones by charge-transfer reaction. J Pharmaceut Biomed 33:693–698.  https://doi.org/10.1016/s0731-7085(03)00365-0 CrossRefGoogle Scholar
  27. 27.
    Tu XM, Xie QJ, Zhao H, Qin Y, Yao SZ (2007) Synthesis and characterization of novel quinone-amine polymer/carbon nanotubes composite for sensitive electrocatalytic detection of NADH. Electroanal 19:1815–1821.  https://doi.org/10.1002/elan.200703939 CrossRefGoogle Scholar
  28. 28.
    Nikles DE, Liang JL, Cain JL, Chacko AP, Webb RI, Belmore K (1995) Amine-quinone polyurethanes. I. Preparation of polyurethane block copolymers containing 2,5-bis(N-2-hydroxyethyl-N-methylamino)-1,4-benzoquinone diol monomer. J Polym Sci Pol Chem 33:2881–2886.  https://doi.org/10.1002/pola.1995.080331704 CrossRefGoogle Scholar
  29. 29.
    Haldar S, Chaudhuri A, Chattopadhyay A (2011) Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J Phys Chem B 115:5693–5706.  https://doi.org/10.1021/jp200255e CrossRefPubMedGoogle Scholar
  30. 30.
    Demchenko AP, Sytink AI (1991) Solvent reorganizational red-edge effect in intramolecular electron transfer. Proc Natl Acad Sci U S A 88:9311–9314.  https://doi.org/10.1073/pnas.88.20.9311 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Haldar S, Chattopadhyay A (2007) Dipolar relaxation within the protein matrix of the green fluorescent protein: a red edge excitation shift study. J Phys Chem B 111:14436–14439.  https://doi.org/10.1021/jp076797z CrossRefPubMedGoogle Scholar
  32. 32.
    Hu ZH, Margulis CJ (2007) Room-temperature ionic liquids: slow dynamics, viscosity, and the red edge effect. Acc Chem Res 40:1097–1105.  https://doi.org/10.1021/ar700046m CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao LX, Xu YQ, Yan M, Galipeau D, Peng XJ, Yan XZ (2010) Excitation-dependent fluorescence of triphenylamine-substituted tridentate pyridyl ruthenium complexes. J Phys Chem A 114:9090–9097.  https://doi.org/10.1021/jp1040234 CrossRefPubMedGoogle Scholar
  34. 34.
    Ni PJ, Dai HC, Zhen L, Sun YJ, Hu JT, Shu J et al (2015) Carbon dots based fluorescent sensor for sensitive determination of hydroquinone. Talanta 144:258–262.  https://doi.org/10.1016/j.talanta.2015.06.014 CrossRefPubMedGoogle Scholar
  35. 35.
    He JH, Song ZR, Zhang ST, Wang L, Zhang Y, Qiu R (2014) Methionine-au nanoparticle modified glassy carbon electrode: a novel platform for electrochemical detection of hydroquinone. Mater Sci 20:381–386.  https://doi.org/10.5755/j01.ms.20.4.6477 CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Zheng JB (2007) Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode. Electrochim Acta 52:7210–7216.  https://doi.org/10.1016/j.electacta.2007.05.039 CrossRefGoogle Scholar
  37. 37.
    Li SJ, Xing Y, Wang GF (2012) A graphene-based electrochemical sensor for sensitive and selective determination of hydroquinone. Microchim Acta 176:163–168.  https://doi.org/10.1007/s00604-011-0709-x CrossRefGoogle Scholar
  38. 38.
    Upan J, Reanpan P, Chailapakul O, Jakmunee J (2016) Flow injection amperometric sensor with a carbon nanotube modified screen printed electrode for determination of hydroquinone. Talanta 146:766–771.  https://doi.org/10.1016/j.talanta.2015.06.026 CrossRefPubMedGoogle Scholar
  39. 39.
    Wu CL, Wang T, Zhang SP, Fan J (2016) Inhibition kinetic spectrophotometric determination of hydroquinone in environmental water samples by sequential injection. Asian J Ecotox 11:749–754.  https://doi.org/10.7524/AJE.1673-5897.20151124001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina

Personalised recommendations