Microchimica Acta

, 186:359 | Cite as

Enhanced resistive acetone sensing by using hollow spherical composites prepared from MoO3 and In2O3

  • Wenhao Jiang
  • Lingling Meng
  • Sufang Zhang
  • Xiaohong ChuaiEmail author
  • Peng Sun
  • Fangmeng Liu
  • Xu Yan
  • Yuan Gao
  • Xishuang Liang
  • Geyu LuEmail author
Original Paper


Hollow sphere composites were synthesized by a template-free hydrothermal method from MoO3 and In2O3. The spheres have a typical size of 800 ± 50 nm and were characterized by XRD, FESEM, TEM, XPS. Gas sensors based on samples with different Mo/In composite ratios were fabricated and their gas sensing properties were studied. The results show that a Mo:In ratio of 1:1 in the composite gives the highest response, typically at a working temperature of 250 °C. The response increases to 38 when exposed to 100 ppm acetone at 250 °C. This is 13.6 times better than when using pure MoO3. The sensor shows improved selectivity, response, repeatability and long-term stability. Typical features include a large specific surface area, and high levels of chemisorbed oxygen and defective oxygen sites. The N-N heterojunction theory was used to explain the improvement of gas sensing performance.

Graphical abstract

Schematic presentation of MoO3 and In2O3 composites and response test graph for 100 ppm acetone. The sensor based on this composite exhibits a very high response (38) to acetone at 250 °C and very fast response time (2 s).


Gas sensors Hydrothermal method Molybdenum oxide Indium oxide Hollow spheres Acetone Synergistic effect 



This work is supported by National Key Research and Development Program of China (Nos. 2016YFC0201002 and 2016YFC0207300), the National Nature Science Foundation of China (Nos. 61831011, 61327804, 61520106003, 61803171 and 61833006), Program for Chang Jiang Scholars and Innovative Research Team in University (No. IRT13018), Application and Basic Research of Jilin Province (20130102010JC), Program for JLU Science and Technology Innovative Research Team (JLUSTIRT 2017TD-07), Fundamental Research Funds for the Central Universities.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3471_MOESM1_ESM.doc (2.4 mb)
ESM 1 (DOC 2484 kb)


  1. 1.
    Liu X, Tian X, Jiang X, Jiang L, Hou P, Zhang S, Sun X, Yang H, Cao R, Xu X (2018) Facile preparation of hierarchical Sb-doped In2O3 microstructures for acetone detection. Sensors Actuators B Chem 270:304–311CrossRefGoogle Scholar
  2. 2.
    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213CrossRefGoogle Scholar
  3. 3.
    Li L, He S, Liu M, Zhang C, Chen W (2015) Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature. Anal Chem 87(3):1638–1645CrossRefPubMedGoogle Scholar
  4. 4.
    Meyyappan M (2016) Carbon nanotube-based chemical sensors. Small 12(16):2118–2129CrossRefPubMedGoogle Scholar
  5. 5.
    Sui L, Song X, Cheng X, Zhang X, Xu Y, Gao S, Wang P, Zhao H, Huo L (2015) An ultraselective and ultrasensitive TEA sensor based on α-MoO3 hierarchical nanostructures and the sensing mechanism. CrystEngComm 17(34):6493–6503CrossRefGoogle Scholar
  6. 6.
    Mane AA, Moholkar AV (2018) Effect of solution concentration on physicochemical and NO2 gas sensing properties of sprayed MoO3 nanobelts. Thin Solid Films 648:50–61CrossRefGoogle Scholar
  7. 7.
    Bai S, Chen C, Zhang D, Luo R, Li D, Chen A, Liu CC (2014) Intrinsic characteristic and mechanism in enhancing H2S sensing of Cd-doped α-MoO3 nanobelts. Sensors Actuators B Chem 204:754–762CrossRefGoogle Scholar
  8. 8.
    Shen J, Guo S, Chen C, Sun L, Wen S, Chen Y, Ruan S (2017) Synthesis of Ni-doped α-MoO3 nanolamella and their improved gas sensing properties. Sensors Actuators B Chem 252:757–763CrossRefGoogle Scholar
  9. 9.
    Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167CrossRefGoogle Scholar
  10. 10.
    Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Jpn 7:1CrossRefGoogle Scholar
  11. 11.
    Yamazoe N, Shimanoe K (2008) Theory of power laws for semiconductor gas sensors. Sensors Actuators B Chem 128(2):566–573CrossRefGoogle Scholar
  12. 12.
    Sakai G, Matsunaga N, Shimanoe K, Yamazoe N (2001) Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sensors Actuators B Chem 80:125–131CrossRefGoogle Scholar
  13. 13.
    Sui L, Zhang X, Cheng X, Wang P, Xu Y, Gao S, Zhao H, Huo L (2017) Au-loaded hierarchical MoO3 hollow spheres with enhanced gas-sensing performance for the detection of BTX (benzene, toluene, and xylene) and the sensing mechanism. ACS Appl Mater Interfaces 9(2):1661–1670CrossRefPubMedGoogle Scholar
  14. 14.
    Bai S, Guo J, Shu X, Xiang X, Luo R, Li D, Chen A, Liu CC (2017) Surface functionalization of Co3O4 hollow spheres with ZnO nanoparticles for modulating sensing properties of formaldehyde. Sensors Actuators B Chem 245:359–368CrossRefGoogle Scholar
  15. 15.
    Li H, Li J, Zhu Y, Xie W, Shao R, Yao X, Gao A, Yin Y (2018) Cd2+-doped amorphous TiO2 hollow spheres for robust and ultrasensitive Photoelectrochemical sensing of hydrogen sulfide. Anal Chem 90(8):5496–5502CrossRefPubMedGoogle Scholar
  16. 16.
    Zhu L, Zeng W, Yang J, Li Y (2018) Fabrication of hierarchical hollow NiO/ZnO microspheres for ethanol sensing property. Mater Lett 230:297–299CrossRefGoogle Scholar
  17. 17.
    Wang D, Shang W, Zhang B, Jiang C, Qu F, Yang M (2019) Manganese-doped zinc oxide hollow balls for chemiresistive sensing of acetone vapors. Microchim Acta 186:44CrossRefGoogle Scholar
  18. 18.
    Xu Q, Ju D, Zhang Z, Yuan S, Zhang J, Xu H, Cao B (2016) Near room-temperature triethylamine sensor constructed with CuO/ZnO P-N heterostructural nanorods directly on flat electrode. Sensors Actuators B Chem 225:16–23CrossRefGoogle Scholar
  19. 19.
    Yu Q, Zhu J, Xu Z, Huang X (2015) Facile synthesis of α-Fe2O3@SnO2 core–shell heterostructure nanotubes for high performance gas sensors. Sensors Actuators B Chem 213:27–34CrossRefGoogle Scholar
  20. 20.
    Feng C, Li X, Ma J, Sun Y, Wang C, Sun P, Zheng J, Lu G (2015) Facile synthesis and gas sensing properties of In2O3-WO3 heterojunction nanofibers. Sensors Actuators B Chem 209:622–629CrossRefGoogle Scholar
  21. 21.
    Zhang S, Song P, Wang Q (2018) Enhanced acetone sensing performance of an α-Fe2O3-In2O3 heterostructure nanocomposite sensor. J Phys Chem Solids 120:261–270CrossRefGoogle Scholar
  22. 22.
    Greiner MT, Chai L, Helander MG, Tang WM, Lu ZH (2012) Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Adv Funct Mater 22(21):4557–4568CrossRefGoogle Scholar
  23. 23.
    Pan CA, Ma TP (1980) Work function of In2O3 film as determined from internal photoemission. Appl Phys Lett 37(8):714–716CrossRefGoogle Scholar
  24. 24.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors Actuators B Chem 204:250–272CrossRefGoogle Scholar
  25. 25.
    Sounart TL, Liu J, Voigt JA, Huo M, Spoerke ED, McKenzie B (2007) Secondary nucleation and growth of ZnO. J Am Chem Soc 129:15786–15793CrossRefPubMedGoogle Scholar
  26. 26.
    Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Huang RF, Wen LS (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134–140CrossRefGoogle Scholar
  27. 27.
    Wang S, Zhang J, Yang J, Gao X, Zhang H, Wang Y, Zhu Z (2015) Spinel ZnFe2O4 nanoparticle-decorated rod-like ZnO nanoheterostructures for enhanced gas sensing performances. RSC Adv 5(13):10048–10057CrossRefGoogle Scholar
  28. 28.
    Sunu SS, Prabhu E, Jayaraman V, Gnanasekar KI, Seshagiri TK, Gnanasekaran T (2004) Electrical conductivity and gas sensing properties of MoO3. Sensors Actuators B Chem 101(1–2):161–174CrossRefGoogle Scholar
  29. 29.
    Alenezi MR, Alshammari AS, Jayawardena KD, Beliatis MJ, Henley SJ, Silva SR (2013) Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J Phys Chem C Nanomater Interfaces 117(34):17850–17858CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gao L, Ren F, Cheng Z, Zhang Y, Xiang Q, Xu J (2015) Porous corundum-type In2O3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm 17(17):3268–3276CrossRefGoogle Scholar
  31. 31.
    Wang S, Wang L, Yang T, Liu X, Zhang J, Zhu B, Zhang S, Huang W, Wu S (2010) Porous α-Fe2O3 hollow microspheres and their application for acetone sensor. J Solid State Chem 183(12):2869–2876CrossRefGoogle Scholar
  32. 32.
    Xu JM, Zhang J, Wang BB, Liu F (2015) Shape-regulated synthesis of cobalt oxide and its gas-sensing property. J Alloys Compd 619:361–367CrossRefGoogle Scholar
  33. 33.
    Zhou X, Feng W, Wang C, Hu X, Li X, Sun P, Shimanoe K, Yamazoe N, Lu G (2014) Porous ZnO/ZnCo2O4 hollow spheres: synthesis, characterization, and applications in gas sensing. J Mater Chem A 2(41):17683–17690CrossRefGoogle Scholar
  34. 34.
    Shen X, Liu Q, Ji Z, Zhu G, Zhou H, Chen K (2015) Controlled synthesis and gas sensing properties of porous Fe2O3/NiO hierarchical nanostructures. CrystEngComm 17(29):5522–5529CrossRefGoogle Scholar
  35. 35.
    Han D, Song P, Zhang H, Yang Z, Wang Q (2014) Cu2O template-assisted synthesis of porous In2O3 hollow spheres with fast response towards acetone. Mater Lett 124:93–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Wenhao Jiang
    • 1
  • Lingling Meng
    • 1
  • Sufang Zhang
    • 1
  • Xiaohong Chuai
    • 1
    Email author
  • Peng Sun
    • 1
  • Fangmeng Liu
    • 1
  • Xu Yan
    • 1
  • Yuan Gao
    • 1
  • Xishuang Liang
    • 1
  • Geyu Lu
    • 1
    Email author
  1. 1.State Key Laboratory on Integrated Optoelectronics, Key Laboratory of gas sensors, Jilin Province, College of Electronic Science and EngineeringJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations