Advertisement

Microchimica Acta

, 186:356 | Cite as

A versatile fluorometric aptasensing scheme based on the use of a hybrid material composed of polypyrrole nanoparticles and DNA-silver nanoclusters: application to the determination of adenosine, thrombin, or interferon-gamma

  • Jing Wang
  • Bingzhi Li
  • Qiaoyun Lu
  • Xiaoyun Li
  • Chenyuan Weng
  • Xiaoqiang Yan
  • Junli Hong
  • Xuemin ZhouEmail author
Original Paper
  • 21 Downloads

Abstract

The authors describe a versatile aptasensing scheme based on the use of polypyrrole nanoparticles (PPyNPs) and DNA-silver nanoclusters (DNA-AgNCs) for multiple target detection. The DNA-AgNCs consist of two functional domains, viz. (a) a nucleation domain for attaching the metal core of the nanoclusters, and (b) a recognition domain which consists of a single-stranded aptamer. In the absence of analytes, the single-strand recognition domain will be absorbed onto the surface of the PPyNPs through π stacking and hydrophobic interactions. As a result, the red fluorescence of the DNA-AgNCs (with excitation/emission peaks at 535/625 nm) is quenched by the PPyNPs. On introducing the analytes, the DNA-AgNCs will bind them. This leads to the desorption of DNA-AgNCs and the recovery of the red fluorescence. Based on the above strategy, a versatile, sensitive and selective aptasensor was established for detection of adenosine, thrombin and interferon-gamma. The method was applied to the detection of the above targets in (spiked) serum samples and gave satisfactory results, with detection limit of 0.58 nM for IFN-γ, 0.39 nM for adenosine, and 2.2 nM for thrombin. The use of PPyNPs results in uniquely low non-specific absorption and in improved analytical results in case of real-sample analysis when compared to previously reported methods.

Graphical abstract

Schematic illustration of DNA-silver nanoclusters and polypyrrole nanoparticles in an aptasensor for detection of multiple targets.

Keywords

Aptasensor DNA-silver nanoclusters Steric hindrance Polypyrrole nanoparticles Hybrid system Nanosensor Adenosine Thrombin Interferon-gamma Nucleic acid Fluorescence 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81773681, 81572081 and 81273480). B.Z.L. acknowledges funding from Postgraduate Research & Practice Innovation Program of Jiangsu Province (JX22013405).

Compliance with ethical standards

The authors declare no competing financial or non-financial interest.

Supplementary material

604_2019_3459_MOESM1_ESM.doc (1.4 mb)
ESM 1 (DOC 1.44 mb)

References

  1. 1.
    Darmostuk M, Rimpelova S, Gbelcova H, Ruml T (2015) Current approaches in SELEX: an update to aptamer selection technology. Biotechnol Adv 33(6):1141–1161.  https://doi.org/10.1016/j.biotechadv CrossRefPubMedGoogle Scholar
  2. 2.
    Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li X, Le XC (2014) Aptamer binding assays for proteins: the thrombin example—a review. Anal Chim Acta 837:1–15.  https://doi.org/10.1016/j.aca CrossRefPubMedGoogle Scholar
  3. 3.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998.  https://doi.org/10.1021/cr030183i CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Toh SY, Citartan M, Gopinath SCB, Tang T (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403.  https://doi.org/10.1016/j.bios CrossRefPubMedGoogle Scholar
  5. 5.
    Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825.  https://doi.org/10.1126/science.287.5454.820 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zheng F, Zhang P, Xi Y, Chen J, Li L, Zhu J (2015) Aptamer/Graphene quantum dots nanocomposite capped fluorescent mesoporous silica nanoparticles for intracellular drug delivery and real-time monitoring of drug release. Anal Chem 87(23):11739–11745.  https://doi.org/10.1021/acs.analchem.5b03131 CrossRefPubMedGoogle Scholar
  7. 7.
    Hashemian Z, Khayamian T, Saraji M, Shirani MP (2016) Aptasensor based on fluorescence resonance energy transfer for the analysis of adenosine in urine samples of lung cancer patients. Biosens Bioelectron 79:334–340.  https://doi.org/10.1016/j.bios CrossRefPubMedGoogle Scholar
  8. 8.
    Liu B, Huang PJ, Kelly EY, Liu J (2016) Graphene oxide surface blocking agents can increase the DNA biosensor sensitivity. Biotechnol J 11(6):780–787.  https://doi.org/10.1002/biot CrossRefPubMedGoogle Scholar
  9. 9.
    Ke K, Lin L, Liang H, Chen X, Han C, Li J, Yang H (2015) Polypyrrole nanoprobes with low non-specific protein adsorption for intracellular mRNA detection and photothermal therapy. Chem Commun 51(31):6800–6803.  https://doi.org/10.1039/C5CC01129A CrossRefGoogle Scholar
  10. 10.
    Da Silva FAG Jr, Queiroz JC, Macedo ER, Fernandes AWC, Freire NB, Da Costa MM, de Oliveira HP (2016) Antibacterial behavior of polypyrrole: the influence of morphology and additives incorporation. Mater Sci Eng C 62:317–322.  https://doi.org/10.1016/j.msec CrossRefGoogle Scholar
  11. 11.
    Ramanavicius A, Kurilcik N, Jursenas S, Finkelsteinas A, Ramanaviciene A (2007) Conducting polymer based fluorescence quenching as a new approach to increase the selectivity of immunosensors. Biosens Bioelectron 23(4):499–505.  https://doi.org/10.1016/j.bios CrossRefPubMedGoogle Scholar
  12. 12.
    Richards CI, Choi S, Hsiang J, Antoku Y, Vosch T, Bongiorno A, Tzeng Y, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130(15):5038–5039.  https://doi.org/10.1021/ja8005644 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu X, Wang F, Aizen R, Yehezkeli O, Willner I (2013) Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc 135(32):11832–11839.  https://doi.org/10.1021/ja403485r CrossRefPubMedGoogle Scholar
  14. 14.
    Li B, Wang X, Shen X, Zhu W, Xu L, Zhou X (2016) Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions. J Colloid Interface Sci 467:90–96.  https://doi.org/10.1016/j.jcis CrossRefPubMedGoogle Scholar
  15. 15.
    Han D, Wei C (2018) A molecular beacon based on DNA-templated silver nanoclusters for the highly sensitive and selective multiplexed detection of virulence genes. Talanta 181:24–31.  https://doi.org/10.1016/j.talanta CrossRefPubMedGoogle Scholar
  16. 16.
    Mu W, Yang R, Robertson A, Chen Q (2018) A near-infrared BSA coated DNA-AgNCs for cellular imaging. Colloids Surf B: Biointerfaces 162:427–431.  https://doi.org/10.1016/j.colsurfb CrossRefPubMedGoogle Scholar
  17. 17.
    Ang YS, Woon WWE, Yung LL (2018) The role of spacer sequence in modulating turn-on fluorescence of DNA-templated silver nanoclusters. Nucleic Acids Res 46(14):6974–6982.  https://doi.org/10.1093/nar/gky521 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sharma J, Rocha RC, Phipps ML, Yeh H, Balatsky KA, Vu DM, Shreve AP, Werner JH, Martinez JS (2012) A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 4(14):4107–4110.  https://doi.org/10.1039/c2nr30662j CrossRefPubMedGoogle Scholar
  19. 19.
    Wang M, Lin Z, Liu Q, Jiang S, Liu H, Su X (2018) DNA-hosted copper nanoclusters/Graphene oxide based fluorescent biosensor for protein kinase activity detection. Anal Chim Acta 1012:66–73.  https://doi.org/10.1016/j.aca CrossRefPubMedGoogle Scholar
  20. 20.
    Song J, Lau PS, Liu M, Shuang S, Dong C, Li Y (2014) A general strategy to create RNA aptamer sensors using “regulated” graphene oxide adsorption. Acs Appl Mater Interfaces 6(24):21806–21812.  https://doi.org/10.1021/am502138n CrossRefPubMedGoogle Scholar
  21. 21.
    Zou X, Wei S, Jasensky J, Xiao M, Wang Q, Brooks CL III, Chen Z (2017) Molecular interactions between graphene and biological molecules. J Am Chem Soc 139(5):1928–1936.  https://doi.org/10.1021/jacs.6b11226 CrossRefPubMedGoogle Scholar
  22. 22.
    Li B, Chen Y, Wang J, Lu Q, Zhu W, Xu L, Shen X, Luo J, Zhu C, Li X, Hong J, Zhou X (2018) DNA-silver nanoclusters/polypyrrole nanoparticles: a label-free and enzyme-free platform for multiplexed transcription factors detection. Sensors Actuators B Chem 274:481–490.  https://doi.org/10.1016/j.snb CrossRefGoogle Scholar
  23. 23.
    Lu W, Luo Y, Chang G, Qin X, Liao F, Sun X (2011) Polypyrrole colloidal nanospheres as an effective fluorescent sensing platform for DNA detection. Synth Met 161(15–16):1766–1770.  https://doi.org/10.1016/j.synthmet CrossRefGoogle Scholar
  24. 24.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914.  https://doi.org/10.1007/s00604-017-2318-9 CrossRefGoogle Scholar
  25. 25.
    Pan L, Huang Y, Wen C, Zhao S (2013) Label-free fluorescence probe based on structure-switching aptamer for the detection of interferon gamma. Analyst 138(22):6811–6816.  https://doi.org/10.1039/c3an01275a CrossRefPubMedGoogle Scholar
  26. 26.
    Chen W, Fang X, Ye X, Li H, Cao H, Kong J (2017) DNA nanomachine-assisted magnetic bead based target recycling and isothermal amplification for sensitive fluorescence determination of interferon-γ. Microchim Acta 184(12):4869–4877.  https://doi.org/10.1007/s00604-017-2511-x CrossRefGoogle Scholar
  27. 27.
    Jiang J, He Y, Yu X, Zhao J, Cui H (2013) A homogeneous hemin/G-quadruplex DNAzyme based turn-on chemiluminescence aptasensor for interferon-gamma detection via in-situ assembly of luminol functionalized gold nanoparticles, deoxyribonucleic acid, interferon-gamma and hemin. Anal Chim Acta 791:60–64.  https://doi.org/10.1016/j.aca CrossRefPubMedGoogle Scholar
  28. 28.
    Tuleuova N, Jones CN, Yan J, Ramanculov E, Yokobayashi Y, Revzin A (2010) Development of an aptamer beacon for detection of interferon-gamma. Anal Chem 82(5):1851–1857.  https://doi.org/10.1021/ac9025237 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhao J, Chen C, Zhang L, Jiang J, Yu R (2012) An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection. Biosens Bioelectron 36(1):129–134.  https://doi.org/10.1016/j.bios CrossRefPubMedGoogle Scholar
  30. 30.
    Farid S, Meshik X, Choi M, Mukherjee S, Lan Y, Parikh D, Poduri S, Baterdene U, Huang C, Wang YY, Burke P, Dutta M, Stroscio MA (2015) Detection of interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens Bioelectron 71:294–299.  https://doi.org/10.1016/j.bios CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou Z, Xiao L, Xiang Y, Zhou J, Tong A (2015) A general approach for rational design of fluorescent DNA aptazyme sensors based on target-induced unfolding of DNA hairpins. Anal Chim Acta 889:179–186.  https://doi.org/10.1016/j.aca CrossRefPubMedGoogle Scholar
  32. 32.
    Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3(9):697–703.  https://doi.org/10.1038/nchem.1092 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PharmacyNanjing Medical, UniversityNanjingChina
  2. 2.Drug Clinical Trial InstitutionWuxi People’s Hospital, Nanjing Medical UniversityWuxiChina

Personalised recommendations