Advertisement

Microchimica Acta

, 186:282 | Cite as

Fluorometric turn-on detection of ascorbic acid based on controlled release of polyallylamine-capped gold nanoclusters from MnO2 nanosheets

  • Qingqing Tan
  • Weisu Kong
  • Han Sun
  • Xia QinEmail author
  • Fengli QuEmail author
Original Paper
  • 30 Downloads

Abstract

A fluorometric turn-on assay is described for ascorbic acid (AA). It is based on the controlled release of polyallylamine-stabilized gold nanoclusters (polyallylamine-AuNCs) from MnO2 nanosheets. In an aqueous solution of near-neutral pH value, the positively charged capped AuNCs are adsorbed on the surface of the negatively charged MnO2 nanosheets. The adsorption leads to the quenching of the fluorescence of the AuNCs. However, in the presence of AA, MnO2 is reduced to Mn2+. This causes the destruction of the MnO2 nanosheets. As a result, the fluorescence of the polyallylamine-AuNCs at 615 nm is recovered. This method for determination of AA is inexpensive, sensitive, and selective. It works in the 0.01 to 200 μM concentration range and has a 3.2 nM detection limit (for S/N = 3).

Graphical abstract

Gold nanoclusters (AuNCs) and polyallylamine can form polyallylamine-AuNCs to enhance the orange fluorescence of AuNCs. MnO2 nanosheets can absorb polyallylamine-AuNCs, and this results in fluorescence quenching of polyallylamine-AuNCs. Ascorbic acid (AA) can reduce MnO2 nanosheets, in this results in the fluorescence recovery of polyallylamine-AuNCs.

Keywords

MnO2 nanosheets Gold nanoclusters Polyallylamine Ascorbic acid detection AIEE FRET 

Notes

Acknowledgments

The authors are grateful for the support of the National Natural Science Foundation of China (21775089), Outstanding Youth Foundation of Shandong Province (ZR2017JL010), Key Research and Development Program of Jining City (2018ZDGH032), and Project of Shandong Province Higher Educational Science and Technology Program (J18KA101).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Wang S, Schram I, Sund R (1995) Determination of plasma ascorbic acid by HPLC: method and stability studies. Eur J Pharm Sci 3:231–239CrossRefGoogle Scholar
  2. 2.
    Li GM, Lv N, Zhang JL, Nia JZ (2017) MnO2 in situ formed into the pores of C-dots/ZIF-8 hybrid nanocomposites as an effective quencher for fluorescence sensing ascorbic acid. RSC Adv 7:16423–16427CrossRefGoogle Scholar
  3. 3.
    Kong WH, Wu D, Li GL, Chen XF, Gong PW, Sun ZW, Chen G, Xia L, You JM, Wu YN (2017) A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 165:677–684CrossRefGoogle Scholar
  4. 4.
    Qu FL, Pei HM, Kong RM, Zhu SY, Xia L (2017) Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165:136–142CrossRefGoogle Scholar
  5. 5.
    Wu T, Guan Y, Ye J (2007) Determination of flavonoids and ascorbic acid ingrapefruit peel and juice by capillary electrophoresis with electrochemical detection. Food Chem 100:1573–1579CrossRefGoogle Scholar
  6. 6.
    Gioia M, Andreatta P, Boschetti S, Gatti R, Pharm Biomed J (2008) Development and validation of a liquid chromatographic method for the determination of ascorbic acid, dehydroascorbic acid and acetaminophen in pharmaceuticals. Anal Chem 48:331–339Google Scholar
  7. 7.
    Li N, Li Y, Han Y, Pan W, Zhang TT, Tang B (2014) A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo. Anal Chem 86:3924–3930CrossRefGoogle Scholar
  8. 8.
    Zhao P, He KY, Han YT, Zhang Z, Yu MZ, Wang HH, Huang Y, Nie Z, Yao SZ (2015) Near-infrared dual-emission quantum dots-gold nanoclusters nanohybrid via co-template synthesis for ratiometric fluorescent etection and bioimaging of ascorbic acid in vitro and in vivo. Anal Chem 87:9998–10005CrossRefGoogle Scholar
  9. 9.
    Li X, Gao X, Shi W, Ma H (2014) Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev 114:590–659CrossRefGoogle Scholar
  10. 10.
    Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and application to bioimaging. J Am Chem Soc 129:10322–10323CrossRefGoogle Scholar
  11. 11.
    Ishii K, Kubo K, Sakurada T, Komori K, Sakai Y (2011) Phthalocyanine-based fluorescence probes for detecting ascorbic acid: phthalocyaninatosilicon covalently linked to TEMPO radicals. Chem Commun 47:4932–4934CrossRefGoogle Scholar
  12. 12.
    Maki T, Soh N, Nakano K, Imato T (2011) Flow injection fluorometric determination of ascorbic acid using perylenebisimide-linked nitroxide. Talanta 85:1730–1733CrossRefGoogle Scholar
  13. 13.
    Lin SC, Cheng HJ, Ouyang QR, Wei H (2016) Deciphering the quenching mechanism of 2D MnO2 nanosheets towards Au nanocluster fluorescence to design effective glutathione biosensors. Anal Methods 8:3935–3940CrossRefGoogle Scholar
  14. 14.
    Dou X, Yuan X, Yu LZ, Yao Q, Leong DT, Xie J (2014) Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 6:157–161CrossRefGoogle Scholar
  15. 15.
    Wu ZN, Liu JL, Gao Y, Liu HW, Li TT, Zou HY, Wang ZG, Zhang K, Wang Y, Zhang H, Yang B (2015) Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property. J Am Chem Soc 137:12906–12913CrossRefGoogle Scholar
  16. 16.
    Zhu J, Zhang L, Teng Y, Lou B, Jia X, Gu X, Wang E (2015) G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging. Nanoscale 7:13224–13229CrossRefGoogle Scholar
  17. 17.
    Aldeek F, Muhammed MAH, Palui G, Zhan N, Mattoussi H (2013) Growth of highly fluorescent polyethylene glycol- and zwitterion-functionalized gold nanoclusters. ACS Nano 7:2509–2521CrossRefGoogle Scholar
  18. 18.
    Zhang XD, Wu D, Shen X, Liu PX, Fan FY, Fan SJ (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638CrossRefGoogle Scholar
  19. 19.
    Omomo Y, Sasaki T, Watanabe M (2003) Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J Am Chem Soc 125:3568–3575CrossRefGoogle Scholar
  20. 20.
    Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J (2008) Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc 130:15938–15943CrossRefGoogle Scholar
  21. 21.
    Zhang N, Ma ZY, Ruan YF, Zhao WW, Xu JJ, Chen HY (2016) Simultaneous photoelectrochemical immunoassay of dual cardiac markers using specific enzyme tags: a proof of principle for multiplexed bioanalysis. Anal Chem 88:1990–1994CrossRefGoogle Scholar
  22. 22.
    Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434CrossRefGoogle Scholar
  23. 23.
    Yuan Y, Wu S, Shu F, Liu Z (2014) An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun 50:1095–1097CrossRefGoogle Scholar
  24. 24.
    Zhang YY, Li YX, Zhang CY, Zhang QF, Huang XN, Yang MD, Hahzad SA, Lo KK-W, Yu C, Jiang SC (2017) Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets. Anal Bioanal Chem 409:4771–4778CrossRefGoogle Scholar
  25. 25.
    Liang J, Kwok RT, Shi H, Tang BZ, Liu B (2013) Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study. ACS Appl Mater Interfaces 5:8784–8789CrossRefGoogle Scholar
  26. 26.
    Song Z, Kwok RT, Zhao E, He Z, Hong Y, Lam JW, Liu B, Tang BZ (2014) A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl Mater Interfaces 6:17245–17254CrossRefGoogle Scholar
  27. 27.
    Luo ZT, Yuan X, Yu Y, Zhang QB, Leong DT, Lee JY, Xie JP (2012) From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)−thiolate core−shell nanoclusters. J Am Chem Soc 134:16662–16670CrossRefGoogle Scholar
  28. 28.
    Meng HM, Lu L, Zhao XH, Chen Z, Zhao Z, Yang C, Zhang XB, Tan W (2015) Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Anal Chem 87:4448–4454CrossRefGoogle Scholar
  29. 29.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914CrossRefGoogle Scholar
  30. 30.
    Na W, Liu H, Wang M, Su X (2017) A boronic acid based glucose assay based on the suppression of the inner filter effect of gold nanoparticles on the orange fluorescence of graphene oxide quantum dots. Microchim Acta 184:1463–1470CrossRefGoogle Scholar
  31. 31.
    Chen Y, O’Donoghue M, Huang YF, Kang HZ, Phillips J, Chen XL, Estevez M, Yang CY, Tan WH (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132:16559–16570CrossRefGoogle Scholar
  32. 32.
    Li L, Wang C, Liu K, Wang Y, Liu K, Lin Y (2015) Hexagonal cobalt oxyhydroxidecarbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. Anal Chem 87:3404–3411CrossRefGoogle Scholar
  33. 33.
    Ding YQ, Zhao JF, Li B, Zhao X, Wang C, Guo MH, Lin YQ (2018) The CoOOH-TMB oxidative system for use in colorimetric and test strip based determination of ascorbic acid. Microchim Acta 185:131–140CrossRefGoogle Scholar
  34. 34.
    Meng HM, Zhang XB, Yang C, Kuai HL, Mao GJ, Gong L, Zhang WH, Feng SL, Chang JB (2016) Efficient two-photon fluorescence nanoprobe for turn-on detection and imaging of ascorbic acid in living cells and tissues. Anal Chem 88:6057–6063CrossRefGoogle Scholar
  35. 35.
    Wu TT, Hou WL, Ma ZY, Liu ML, Liu XY, Zhang YY, Yao SZ (2019) Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes. Microchim Acta 186:123–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringQufu Normal UniversityQufuChina
  2. 2.School of Geography and TourismQufu Normal UniversityRizhaoChina

Personalised recommendations