Advertisement

Microchimica Acta

, 186:277 | Cite as

Ratiometric determination of hydrogen peroxide based on the size-dependent green and red fluorescence of CdTe quantum dots capped with 3-mercaptopropionic acid

  • Yongbo WangEmail author
  • Min Yang
  • Yingkun Ren
  • Jun Fan
Original Paper
  • 42 Downloads

Abstract

A ratiometric fluorescent nanoprobe is described for the detection of H2O2. It is based on the use of a mixture of green-emitting CdTe quantum dots (GQDs) and red-emitting CdTe QDs (RQDs). The two kinds of QDs have different size and different fluorescence response towards H2O2. The ratio of the emission intensities at 606 and 510 nm (under 365 nm photoexcitation) can be used as the analytical information. Even without any chemical modification of the surface of the QDs, the probe display high sensitivity and selectivity for H2O2. The fluorescence of small QDs is more effectively quenched by H2O2. Stern-Volmer analysis showed both static and dynamic quenching to occur. The probe works well in the 10~125 μM H2O2 concentration range and has a 0.3 μM detection limit (3σ/slope).

Graphical abstract

Schematic presentation of the ratiometric fluorescent nanoprobe composed of green-emitting and red-emitting CdTe QDs. λ, I, and k are the emission wavelength, emission intensity, and quenching/enhancement coefficient, respectively. The subscript 0 and 1 present the green-emitting and red-emitting CdTe QDs, respectively.

Keywords

Ratiometric fluorescent nanoprobe Binary QD systems Fluorescent detection Fluorescence intensity ratios Quenching efficiency Stern-Volmer plot Biomarkers Real samples Quenching mechanism 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21476183).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3390_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1075 kb)

References

  1. 1.
    Huang X, Song J, Yung BC, Huang X, Xiong Y, Chen X (2018) Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem Soc Rev 47:2873–2920CrossRefGoogle Scholar
  2. 2.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914CrossRefGoogle Scholar
  3. 3.
    Ma N, Sargent EH, Kelley SO (2009) One-step DNA programmed growth of luminescent and biofunctionalized nanocrystals. Nat Nanotechnol 4:121–125CrossRefGoogle Scholar
  4. 4.
    He H, Feng M, Hu J, Chen CX, Wang JQ, Wang XJ, Xu H, Lu JR (2012) Designed short RGD peptides for one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots. ACS Appl Mater Interfaces 4:6362–6370CrossRefGoogle Scholar
  5. 5.
    Wang Y, Yan XP (2013) Fabrication of vascular endothelial growth factor antibody bioconjugated utrasmall near-infrared fluorescent Ag2S quantum dots for targeted cancer imaging in vivo. Chem Commun 49:3324–3326CrossRefGoogle Scholar
  6. 6.
    Dan L, Wang HF (2013) Mn-doped ZnS quantum dot imbedded two-fragment imprinting silica for enhanced room temperature phosphorescence probing of domoic acid. Anal Chem 85:4844–4848CrossRefGoogle Scholar
  7. 7.
    Zrazhevskiy P, Sena M, Gao XH (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354CrossRefGoogle Scholar
  8. 8.
    Karakoti AS, Shukla R, Shanker R, Singh S (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interf Sci 215:28–45CrossRefGoogle Scholar
  9. 9.
    Jiao H, Zhang L, Liang Z, Peng G, Lin H (2014) Size-controlled sensitivity and selectivity for the fluorometric detection of Ag+ by homocysteine capped CdTe quantum dots. Microchim Acta 181:1393–1399CrossRefGoogle Scholar
  10. 10.
    Xia YS, Cao C, Zhu CQ (2008) Two distinct photoluminescence responses of CdTe quantum dots to Ag (I). J Lumin 128:166–172CrossRefGoogle Scholar
  11. 11.
    Laferrière M, Galian RE, Maurel V, Scaiano JC (2006) Non-linear effects in the quenching of fluorescent quantum dots by nitroxyl free radicals. Chem Commun 3:257–259CrossRefGoogle Scholar
  12. 12.
    Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nat Mater 5:409–417CrossRefGoogle Scholar
  13. 13.
    Marco G, Mirella T, Enrica M, Pier GP (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals. Nat Rev Mol Cell Biol 8:722–728CrossRefGoogle Scholar
  14. 14.
    Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134CrossRefGoogle Scholar
  15. 15.
    Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382CrossRefGoogle Scholar
  16. 16.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247CrossRefGoogle Scholar
  17. 17.
    Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107:15681–15686CrossRefGoogle Scholar
  18. 18.
    Long LH, Evans PJ, Halliwell B (1999) Hydrogen peroxide in human urine: implications for antioxidant defense and redox regulation. Biochem Biophys Res Commun 262:605–609CrossRefGoogle Scholar
  19. 19.
    Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J Am Chem Soc 133:8424–8427CrossRefGoogle Scholar
  20. 20.
    Yao J, Zhang K, Zhu H, Ma F, Sun M, Yu H, Sun J, Wang S (2013) Efficient ratiometric fluorescence probe based on dual-emission quantum dots hybrid for on-site determination of copper ions. Anal Chem 85:6461–6468CrossRefGoogle Scholar
  21. 21.
    Jing L, Kershaw SV, Li Y, Huang X, Li Y, Rogach AL, Gao M (2016) Aqueous based semiconductor nanocrystals. Chem Rev 116:10623–10730CrossRefGoogle Scholar
  22. 22.
    Wang Y, Si B, Lu S, Ma X, Liu E, Fan J, Li X, Hu X (2016) Effective improvement in optical properties of colloidal CdTe@ZnS quantum dots synthesized from aqueous solution. Nanotechnology 27:365707CrossRefGoogle Scholar
  23. 23.
    Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nnanocrystals. Chem Mater 15:2854–2860CrossRefGoogle Scholar
  24. 24.
    Zhang J, Zhang X, Zhang JY (2009) Size-dependent time-resolved photoluminescence of colloidal CdSe nanocrystals. J Phys Chem C 113:9512–9515CrossRefGoogle Scholar
  25. 25.
    Masumoto Y, Sonobe K (1997) Size-dependent energy levels of CdTe quantum dots. Phys Rev B 56:9734–9737CrossRefGoogle Scholar
  26. 26.
    Kloepfer JA, Bradforth S, Nadeau JL (2005) Photo-physical properties of biologically compatible CdSe quantum dot structures. J Phys Chem B 109:9996–10003CrossRefGoogle Scholar
  27. 27.
    Yang D, Luo M, Di J, Tu Y, Yan J (2018) Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Microchim Acta 185:305CrossRefGoogle Scholar
  28. 28.
    Sharma AK, Pandey S, Sharma KH, Nerthigan Y, Khan MS, Hang DR, Wu HF (2018) Two dimensional a-MoO3-x nanoflakes as bare eye probe for hydrogen peroxide in biological fluids. Anal Chim Acta 1015:58–65CrossRefGoogle Scholar
  29. 29.
    Xue B, Li K, Gu S, Zhang L, Lu J (2018) Ni foam-supported ZnO nanowires and Co3O4/NiCo2O4 double-shelled nanocages for efficient hydrogen peroxide detection. Sensors Actuat B 262:828–836CrossRefGoogle Scholar
  30. 30.
    Ge J, Xing K, Geng X, Hu YL, Shen XP, Zhang L, Li ZH (2018) Human serum albumin templated MnO2 nanosheets are oxidase mimics for colorimetric determination of hydrogen peroxide and for enzymatic determination of glucose. Microchim Acta 185:559CrossRefGoogle Scholar
  31. 31.
    Chang HC, Ho JA (2015) Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem 87:10362–10367CrossRefGoogle Scholar
  32. 32.
    Bas SZ, Cummins C, Borah D, Ozmen M, Morris MA (2018) Electrochemical sensing of hydrogen peroxide using block copolymer templated iron oxide nanopatterns. Anal Chem 90:1122–1128CrossRefGoogle Scholar
  33. 33.
    Walekar LS, Hu P, Liao F, Guo X, Long M (2018) Turn-on fluorometric and colorimetric probe for hydrogen peroxide based on the in-situ formation of silver ions from a composite made from N-doped carbon quantum dots and silver nanoparticles. Microchim Acta 185:31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.School of Chemical EngineeringNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations