Microchimica Acta

, 186:280 | Cite as

Ratiometric fluorescent immunoassay for the cardiac troponin-I using carbon dots and palladium-iridium nanocubes with peroxidase-mimicking activity

  • Xiaofeng Tan
  • Lianhua Zhang
  • Qiaorong Tang
  • Gengxiu ZhengEmail author
  • He LiEmail author
Original Paper


A nanozyme-linked immunosorbent assay is described for cardiac troponin I which is a biomarker for myocardial infarction. The method is based on the use of Pd-Ir nanocubes with excellent peroxidase-like activity. The nanocubes catalyze the oxidization of nonfluorescent o-phenylenediamine (OPD) by H2O2 to form a yellow fluorescent product (oxOPD) with excitation/emission maxima at 400/570 nm. Carbon dots are added as a reference fluorophore. Under the same excitation wavelength, they display blue fluorescence (450 nm). The ELISA uses the Pd-Ir nanocubes as a label for the secondary antibody and OPD as substrate. The ratio of fluorescence intensities at 570 and 450 nm increases in the 1 pg·mL−1 to 1 ng·mL−1 cardiac troponin I concentration range, and the detection limit is 0.31 pg·mL−1. The method was applied to analyze spiked serum samples, and the results compared well with those obtained by a commercial chemiluminescence assay.

Graphical abstract

Schematic presentation of the ratiometric fluorescence immunoassay for cardiac troponin-I. Pd-Ir nanocubes were employed to fabricate nanozyme-based signal labels for its excellent peroxidase-mimicking activity.


Heart attack biomarker Sandwich immunoassay Ratiometric method Improved ELISA Core-shell structure Ultrasensitive detection Nanozymes Clinical diagnosis Metal alloys O-phenylenediamine 



This study was supported by the Natural Science Foundation of Shandong Province, China (No. ZR2017MB017) and the Natural Science Foundation of China (No. 21245007 and 81000976).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3375_MOESM1_ESM.docx (642 kb)
ESM 1 (DOCX 641 kb)


  1. 1.
    Han S, Zhou T, Yin B, He P (2018) Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Microchim Acta 185(4):210CrossRefGoogle Scholar
  2. 2.
    Zeng K, Tian S, Wang Z, Shen C, Luo J, Yang M, Liu Y-N (2017) An ELISA for the determination of human IgG based on the formation of a colored iron (II) complex and photometric or visual read-out. Microchim Acta 184(8):2791–2796CrossRefGoogle Scholar
  3. 3.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2016) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):1–20Google Scholar
  4. 4.
    Sun J, Ge J, Liu W, Lan M, Zhang H, Wang P, Wang Y, Niu Z (2014) Multi-enzyme co-embedded organic–inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale 6(1):255–262CrossRefGoogle Scholar
  5. 5.
    Huang L, Zhang W, Chen K, Zhu W, Liu X, Wang R, Zhang X, Hu N, Suo Y, Wang J (2017) Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity. Chem Eng J 330:746–752CrossRefGoogle Scholar
  6. 6.
    Ye R, Zhu C, Song Y, Lu Q, Ge X, Yang X, Zhu MJ, Du D, Li H, Lin Y (2016) Bioinspired synthesis of all-in-one organic–inorganic hybrid Nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12(23):3094–3100CrossRefGoogle Scholar
  7. 7.
    Ye R, Zhu C, Song Y, Song J, Fu S, Lu Q, Yang X, Zhu M-J, Du D, Li H (2016) One-pot bioinspired synthesis of all-inclusive protein–protein nanoflowers for point-of-care bioassay: detection of E. Coli O157: H7 from milk. Nanoscale 8(45):18980–18986CrossRefGoogle Scholar
  8. 8.
    Hou C, Wang Y, Ding Q, Jiang L, Li M, Zhu W, Pan D, Zhu H, Liu M (2015) Facile synthesis of enzyme-embedded magnetic metal–organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7(44):18770–18779CrossRefGoogle Scholar
  9. 9.
    Cheng Y-J, Luo G-F, Zhu J-Y, Xu X-D, Zeng X, Cheng D-B, Li Y-M, Wu Y, Zhang X-Z, Zhuo R-X (2015) Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl Mater Interfaces 7(17):9078–9087CrossRefGoogle Scholar
  10. 10.
    Farka ZK, Čunderlová V, HoráČková V, Pastucha MJ, Mikušová Z, HlaváČek AN, Skládal P (2018) Prussian blue nanoparticles as a catalytic label in a Sandwich Nanozyme-linked immunosorbent assay. Anal Chem 90(3):2348–2354CrossRefGoogle Scholar
  11. 11.
    Xia X, Zhang J, Lu N, Kim MJ, Ghale K, Xu Y, McKenzie E, Liu J, Ye H (2015) Pd–Ir core–shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9(10):9994–10004CrossRefGoogle Scholar
  12. 12.
    Wu Q, Li S, Sun Y, Wang J (2017) Hollow gold nanoparticle-enhanced SPR based sandwich immunoassay for human cardiac troponin I. Microchim Acta 184(7):2395–2402CrossRefGoogle Scholar
  13. 13.
    Tao Y, Ju E, Ren J, Qu X (2015) Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater 27(6):1097–1104CrossRefGoogle Scholar
  14. 14.
    Lan J, Xu W, Wan Q, Zhang X, Lin J, Chen J, Chen J (2014) Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal Chim Acta 825:63–68CrossRefGoogle Scholar
  15. 15.
    Chen M, Shu J, Wang Z, Ren C (2017) Porous surface MnO2 microspheres as oxidase mimetics for colorimetric detection of sulfite. J Porous Mater 24(4):973–977CrossRefGoogle Scholar
  16. 16.
    He W, Liu Y, Yuan J, Yin J-J, Wu X, Hu X, Zhang K, Liu J, Chen C, Ji Y (2011) Au@ Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32(4):1139–1147CrossRefGoogle Scholar
  17. 17.
    Gao Z, Ye H, Tang D, Tao J, Habibi S, Minerick A, Tang D, Xia X (2017) Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett 17(9):5572–5579CrossRefGoogle Scholar
  18. 18.
    Benuzzi MLS, Pereira SV, Raba J, Messina GA (2016) Screening for cystic fibrosis via a magnetic and microfluidic immunoassay format with electrochemical detection using a copper nanoparticle-modified gold electrode. Microchim Acta 183(1):397–405CrossRefGoogle Scholar
  19. 19.
    Liang Y, Huang X, Yu R, Zhou Y, Xiong Y (2016) Fluorescence ELISA for sensitive detection of ochratoxin a based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal Chim Acta 936:195–201CrossRefGoogle Scholar
  20. 20.
    Tao L, Zhang C, Zhang J, Sun Y, Li X, Yan K, Jin B, Zhang Z, Yang K (2016) Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles. Microchim Acta 183(7):2163–2168CrossRefGoogle Scholar
  21. 21.
    Zhang W-H, Ma W, Long Y-T (2016) Redox-mediated indirect fluorescence immunoassay for the detection of disease biomarkers using dopamine-functionalized quantum dots. Anal Chem 88(10):5131–5136CrossRefGoogle Scholar
  22. 22.
    Guo X, Wu F, Ni Y, Kokot S (2016) Synthesizing a nano-composite of BSA-capped au nanoclusters/graphitic carbon nitride nanosheets as a new fluorescent probe for dopamine detection. Anal Chim Acta 942:112–120CrossRefGoogle Scholar
  23. 23.
    Wu Y, Wei P, Pengpumkiat S, Schumacher EA, Remcho VT (2015) Development of a carbon dot (C-dot)-linked immunosorbent assay for the detection of human α-fetoprotein. Anal Chem 87(16):8510–8516CrossRefGoogle Scholar
  24. 24.
    Beloglazova N, Speranskaya E, Wu A, Wang Z, Sanders M, Goftman V, Zhang D, Goryacheva IY, De Saeger S (2014) Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosens Bioelectron 62:59–65CrossRefGoogle Scholar
  25. 25.
    Wang L, Xu M, Huang R, Chang X, Chen C, Li L, Zhang Z, Han Y (2017) A dual-label time-resolved fluorescence immunoassay for the simultaneous determination of cardiac troponin T and myoglobin. Slas Technol 22(2):130–135PubMedGoogle Scholar
  26. 26.
    Cheng H, Lin S, Muhammad F, Lin Y-W, Wei H (2016) Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sensors 1(11):1336–1343CrossRefGoogle Scholar
  27. 27.
    Seo S-M, Kim S-W, Park J-N, Cho J-H, Kim H-S, Paek S-H (2016) A fluorescent immunosensor for high-sensitivity cardiac troponin I using a spatially-controlled polymeric, nano-scale tracer to prevent quenching. Biosens Bioelectron 83:19–26CrossRefGoogle Scholar
  28. 28.
    Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44(13):4185–4191CrossRefGoogle Scholar
  29. 29.
    Ma F, Sun M, Zhang K, Wang S (2015) A ratiometric fluorescence sensor for highly selective and sensitive detection of mercuric ion. Sensors Actuators B Chem 209:377–383CrossRefGoogle Scholar
  30. 30.
    Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 125(14):4045–4049CrossRefGoogle Scholar
  31. 31.
    Wang N, Duan J, Shi W, Zhai X, Guan F, Yang L, Hou B (2018) A 3-dimensional C/CeO 2 hollow nanostructure framework as a peroxidase mimetic, and its application to the colorimetric determination of hydrogen peroxide. Microchim Acta 185(9):417CrossRefGoogle Scholar
  32. 32.
    Zarif F, Rauf S, Qureshi MZ, Shah NS, Hayat A, Muhammad N, Rahim A, Nawaz MH, Nasir M (2018) Ionic liquid coated iron nanoparticles are promising peroxidase mimics for optical determination of H 2 O 2. Microchim Acta 185(6):302CrossRefGoogle Scholar
  33. 33.
    Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan AH (2018) Colorimetric aptasensor for campylobacter jejuni cells by exploiting the peroxidase like activity of au@ Pd nanoparticles. Microchim Acta 185(10):448CrossRefGoogle Scholar
  34. 34.
    Peng Y, Shen H, Tang S, Huang Z, Hao Y, Luo Z, Zhou F, Wang T, Feng W (2018) Colorimetric determination of BCR/ABL fusion genes using a nanocomposite consisting of au@ Pt nanoparticles covered with a PAMAM dendrimer and acting as a peroxidase mimic. Microchim Acta 185(8):401CrossRefGoogle Scholar
  35. 35.
    Khataee A, Irani-Nezhad MH, Hassanzadeh J (2018) Improved peroxidase mimetic activity of a mixture of WS 2 nanosheets and silver nanoclusters for chemiluminescent quantification of H 2 O 2 and glucose. Microchim Acta 185(3):190CrossRefGoogle Scholar
  36. 36.
    Nirala NR, Prakash R (2018) Quick colorimetric determination of choline in milk and serum based on the use of MoS 2 nanosheets as a highly active enzyme mimetic. Microchim Acta 185(4):224CrossRefGoogle Scholar
  37. 37.
    Wang G-L, Hu X-L, Wu X-M, Li Z-J (2014) Quantum dots-based glucose sensing through fluorescence quenching by bienzyme-catalyzed chromogenic substrate oxidation. Sensors Actuators B Chem 205:61–66CrossRefGoogle Scholar
  38. 38.
    Zhang F, Liu H, Liu Q, Su X (2018) An enzymatic ratiometric fluorescence assay for 6-mercaptopurine by using MoS 2 quantum dots. Microchim Acta 185(12):540CrossRefGoogle Scholar
  39. 39.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, BaltimoreGoogle Scholar
  40. 40.
    Zong C, Zhang D, Yang H, Wang S, Chu M, Li P (2017) Chemiluminescence immunoassay for cardiac troponin T by using silver nanoparticles functionalized with hemin/G-quadruplex DNAzyme on a glass chip array. Microchim Acta 184(9):3197–3204CrossRefGoogle Scholar
  41. 41.
    Harris D C (1995) Quantitative chemical analysis, 4th edn. In: Freeman W H (ed) Company Press, pp 123–153Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, and Institute of Surface Analysis and Chemical BiologyUniversity of JinanJinanChina
  2. 2.Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.College of Optoelectronics TechnologyChengdu University of Information TechnologyChengduChina

Personalised recommendations