Advertisement

Microchimica Acta

, 186:264 | Cite as

A voltammetric biosensor for mercury(II) using reduced graphene oxide@gold nanorods and thymine-Hg(II)-thymine interaction

  • Huali Jin
  • Mingli Zhang
  • Min WeiEmail author
  • Jun-Hu ChengEmail author
Original Paper
  • 169 Downloads

Abstract

The presented voltammetric mercury(II) sensor is based on the specific interaction between Hg(II) ion and thymine-thymine base pairs. Reduced graphene oxide is functionalized with gold nanorods and then loaded with thionine and streptavidin (RGO@AuNR-TH-SA). A T-rich thiolated DNA (S1) is firstly immobilized on a gold electrode. In the presence of Hg (II), the T-rich biotin-DNA (biotin-S2) binds to S1 via T-Hg(II)-T interaction. Then, the RGO@AuNR-TH-SA is linked to the gold electrode by specific binding between SA and biotin-S2. This produces an electrochemical signal (at −0.208 V vs. Ag/AgCl) of TH that depends on the concentration of Hg (II). The peak current increases linearly in the 1 to 200 nM Hg (II) concentration range, and the detection limit is 0.24 nM. The sensor is highly selective for Hg (II) over other environmentally relevant metal ions, even at concentration ratios of >1000.

Graphical abstract

Schematic representation of a voltammetric biosensor for mercury(II) using reduced graphene oxide@gold nanorods (RGO@AuNRs) and thymine-Hg(II)-thymine interaction. It is based on the fact that RGO@AuNR can strongly adsorb thionine (TH) and streptavidin to realize the signal amplification.

Keywords

Thionine Streptavidin-biotin Differential pulse voltammetry Signal amplification 

Notes

Acknowledgments

This study was funded by the Natural Science Foundation of Henan Province (182300410188), the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (2016RCJH04), and Key Scientific and Technological Project of Henan Province (192102310255).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3372_MOESM1_ESM.docx (52 kb)
ESM 1 (DOCX 51 kb)

References

  1. 1.
    Zhang RX, Deng L, Zhu PJ, Xu SX, Huang CP, Zeng Y, Ni SJ, Zhang XF (2017) Bienzyme-based visual and spectrophotometric aptamer assay for quantitation of nanomolar levels of mercury (II). Microchim Acta 184:541–546CrossRefGoogle Scholar
  2. 2.
    Chen P, Wu P, Zhang YX, Chen JB, Jiang XM, Zheng CB, Hou XD (2016) Strand displacement-induced enzyme-free amplification for label-free and separation-free ultrasensitive atomic fluorescence spectrometric detection of nucleic acids and proteins. Anal Chem 88(24):12386CrossRefGoogle Scholar
  3. 3.
    Denmark IS, Begu E, Arslan Z, Han FXX, Seiter-Moser JM, Pierce EM (2018) Removal of inorganic mercury by selective extraction and coprecipitation for determination of methylmercury in mercury-contaminated soils by chemical vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Anal Chim Acta 1041:68–77CrossRefGoogle Scholar
  4. 4.
    Wu Y, Jiang TT, Wu ZY, Yu RQ (2018) Novel ratiometric surface-enhanced raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg2+. Biosens Bioelectron 99:646–652CrossRefGoogle Scholar
  5. 5.
    Gao F, Zhang TS, Chu YR, Wang QX, Song J, Qiu WW, Lin ZY (2018) Ultrasensitive impedimetric mercury(II) sensor based on thymine-Hg (II)-thymine interaction and subsequent disintegration of multiple sandwich-structured DNA chains. Microchim Acta 185:555CrossRefGoogle Scholar
  6. 6.
    Ono A, Togashi H (2004) High selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew Chem Int Ed 116(33):4400–4402CrossRefGoogle Scholar
  7. 7.
    Wang H, Zhang YH, Ma HM, Ren X, Wang YG, Zhang Y, Wei Q (2016) Electrochemical DNA probe for Hg2+ detection based on a triple-helix DNA and multistage signal amplification strategy. Biosens Bioelectron 86:907–912CrossRefGoogle Scholar
  8. 8.
    Luo JY, Jiang DF, Liu T, Peng JM, Chu ZY, Jin WQ (2018) High-performance electrochemical mercury aptasensor based on synergistic amplification of Pt nanotube arrays and Fe3O4/rGO nanoprobes. Biosens Bioelectron 104:1–7CrossRefGoogle Scholar
  9. 9.
    Zuo YX, Xu JK, Zhu XF, Duan XM, Lu LM, Yu YF (2019) Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim Acta 186:171CrossRefGoogle Scholar
  10. 10.
    Lu MH, Xiao R, Zhang XN, Niu JH, Zhang XT, Wang YM (2016) Novel electrochemical sensing platform for quantitative monitoring of hg(II) on DNA-assembled graphene oxide with target recycling. Biosens Bioelectron 85:267–271CrossRefGoogle Scholar
  11. 11.
    Xu XL, Wei M, Liu YJ, Liu X, Wei W, Zhang YJ, Liu SQ (2017) A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates. Biosens Bioelectron 87:600–606CrossRefGoogle Scholar
  12. 12.
    Cao C, Zhai WT, Lu DD, Zhang HB, Zheng WG (2011) A facile method to prepare stable noncovalent functionalized graphene solution by using thionine. Mater Res Bull 46(4):583–587CrossRefGoogle Scholar
  13. 13.
    Liu Y, Lv BJ, Liu AR, Liang GY, Yin LH, Pu YP, Wei W, Gou SH, Liu SQ (2018) Multicolor sensor for organophosphorus pesticides determination based on the bi-enzyme catalytic etching of gold nanorods. Sens Actuat B 265:675–681CrossRefGoogle Scholar
  14. 14.
    Cao JT, Yang JJ, Zhao LZ, Wang YL, Wang H, Liu YM, Ma SH (2018) Graphene oxide@gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosens Bioelectron 99:92–98CrossRefGoogle Scholar
  15. 15.
    Wei M, Zhang WY (2018) Ultrasensitive aptasensor with DNA tetrahedral nanostructure for Ochratoxin a detection based on hemin/G-quadruplex catalyzed polyaniline deposition. Sens Actuat B 276:1–7CrossRefGoogle Scholar
  16. 16.
    Fathalipour S, Ataei B, Janati F (2019) Aqueous suspension of biocompatible reduced graphene oxide-au NPs composite as an effective recyclable catalyst in a Betti reaction. Mater Sci Eng C 97:356–366CrossRefGoogle Scholar
  17. 17.
    Zhang PP, Huang Y, Lu X, Zhang SY, Li JF, Wei G, Su ZQ (2014) One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air Interface for electrochemistry and Raman detection applications. Langmuir 30:8980–8989CrossRefGoogle Scholar
  18. 18.
    Li C, Zhao JY, Yan XY, Gu Y, Liu WL, Tang L, Zheng B, Li YR, Chen RX, Zhang ZQ (2015) Tremella-like grapheme-au composites used for amperometric determination of dopamine. Analyst 140(6):1913–1920CrossRefGoogle Scholar
  19. 19.
    Qi YY, Xiu FR, Yu GD, Huang LL, Li BX (2017) Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: a new signal amplification mechanism. Biosens Bioelectron 87:439–446CrossRefGoogle Scholar
  20. 20.
    Li JS, Wang H, Guo ZK, Wang YG, Ma HM, Ren X, Du B, Wei Q (2017) A “turn-off” fluorescent biosensor for the detection of mercury (II) based on graphite carbon nitride. Talanta 162:46–51CrossRefGoogle Scholar
  21. 21.
    Xu SH, Li XL, Mao YN, Gao T, Feng XY, Luo XL (2016) Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg2+, and oxytetracycline. Anal Bioanal Chem 408(11):2955–2962CrossRefGoogle Scholar
  22. 22.
    Chen B, Ma J, Yang T, Chen L, Gao PF, Huang CZ (2017) A portable RGB sensing gadget for sensitive detection of Hg2+ using cysteamine-capped QDs as fluorescence probe. Biosens Bioelectron 98:36–40CrossRefGoogle Scholar
  23. 23.
    Yu LL, Xu H, Chen H, Zhang SX, Jiang TT, Bai LJ, Wang WX, Gao SM, Jin J (2019) Label-free DNA Y junction for detection of Hg2+ using exonuclease III or graphene oxide-assisted background reduction. Microchem J 145:1086–1093CrossRefGoogle Scholar
  24. 24.
    Kamali KZ, Pandikumar A, Jayabal S, Ramaraj R, Lim HN, Ong BH, Bien CSD, Kee YY, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377CrossRefGoogle Scholar
  25. 25.
    Li L, Li BX, Qi YY, Jin Y (2009) Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal Bioanal Chem 393(8):2051–2057CrossRefGoogle Scholar
  26. 26.
    Manivannan S, Kang DK, Kim K (2018) Silicate sol-gel functionalized rGO-ag sensor-probe for spectral detection of Hg(II) ions. Mater Res Bull 106:144–151CrossRefGoogle Scholar
  27. 27.
    Wu D, Wang YG, Zhang Y, Ma HM, Pang XH, Hu LH, Du B, Wei Q (2016) Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg2+. Biosens Bioelectron 82:9–13CrossRefGoogle Scholar
  28. 28.
    Wen D, Deng L, Guo SJ, Dong SJ (2011) Self-powered sensor for trace Hg2+ detection. Anal Chem 83(10):3968–3972CrossRefGoogle Scholar
  29. 29.
    Fu CL, Yu H, Su LS, Liu C, Song YL, Wang SY, Lin ZY, Chen F (2018) Homogeneous electrochemical sensor for Hg2+ determination in environment water based on T-Hg2+-T structure and exonuclease III-assisted recycling amplification. Analyst 143:2122–2127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and ControlHenan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.School of Food Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations