Advertisement

Microchimica Acta

, 186:245 | Cite as

Non-enzymatic fluorescent glucose sensor using vertically aligned ZnO nanotubes grown by a one-step, seedless hydrothermal method

  • Hanh Hong MaiEmail author
  • Dinh Hoang Tran
  • Ewald Janssens
Original Paper
  • 90 Downloads

Abstract

A sensitive non-enzymatic fluorescent glucose sensor, consisting of vertically aligned ZnO nanotubes (NTs) grown on low-cost printed circuit board substrates, is described. The ZnO NTs were synthesized by a one-step hydrothermal method without using a seed layer. The sensor function is based on the photoluminescence (PL) quenching of ZnO NTs treated with different concentrations of glucose. The UV emission (emission maximum at 384 nm under 325 nm excitation) decreases linearly with increasing glucose concentration. The sensor exhibits a sensitivity of 3.5%·mM−1 (defined as percentage change of the PL peak intensity per mM) and a lower limit of detection (LOD) of 70 μM. This is better than previously reported work based on the use of ZnO nanostructures. The detection range is 0.1–15 mM which makes the sensor suitable for practical uses in glucose sensing. The sensor was successfully applied to the analysis of human blood serum samples. It is not interfered by common concentrations of ascorbic acid, uric acid, bovine serum albumin, maltose, fructose, and sucrose.

Graphical abstract

Schematic of the one-step, seedless hydrothermal method utilized for synthesizing vertically aligned ZnO nanotubes on printed circuit board substrates (PCBs). The ZnO nanotubes were used to monitor glucose concentrations in a non-enzymatic fluorescent sensor.

Keywords

ZnO nanostructures Non-enzymatic sensor Fluorometric sensor Glucose sensing Printed circuit board Hydrothermal synthesis Photoluminescence quenching 

Notes

Acknowledgements

This work was supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam through Grant No. 103.03-2015.27.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Zhang P, Zhao X, Ji Y, Ouyang Z, Wen X, Li J, Su Z, Wei G (2015) Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J Mater Chem B 3:2487–2496.  https://doi.org/10.1039/C4TB02092H CrossRefGoogle Scholar
  2. 2.
    Dhara K, Mahapatra DR (2017) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49.  https://doi.org/10.1007/s00604-017-2609-1 CrossRefGoogle Scholar
  3. 3.
    Huang L, Wang X, Yin F et al (2016) ZnO nanorods grown directly on copper foil substrate as a binder-free anode for high performance lithium-ion batteries. Int J Electrochem Sci 11:8439–8446.  https://doi.org/10.20964/2016.10.60 CrossRefGoogle Scholar
  4. 4.
    Ahmad R, Tripathy N, Ahn M-S, Bhat KS, Mahmoudi T, Wang Y, Yoo JY, Kwon DW, Yang HY, Hahn YB (2017) Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO Nanorods on electrode. Sci Rep 7:5715.  https://doi.org/10.1038/s41598-017-06064-8 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sodzel D, Khranovskyy V, Beni V, Turner APF, Viter R, Eriksson MO, Holtz PO, Janot JM, Bechelany M, Balme S, Smyntyna V, Kolesneva E, Dubovskaya L, Volotovski I, Ubelis A, Yakimova R (2015) Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Microchim Acta 182:1819–1826.  https://doi.org/10.1007/s00604-015-1493-9 CrossRefGoogle Scholar
  6. 6.
    Chen L, Tse WH, Chen Y, McDonald MW, Melling J, Zhang J (2017) Nanostructured biosensor for detecting glucose in tear by applying fluorescence resonance energy transfer quenching mechanism. Biosens Bioelectron 91:393–399.  https://doi.org/10.1016/j.bios.2016.12.044 CrossRefPubMedGoogle Scholar
  7. 7.
    Sarangi SN, Nozaki S, Sahu SN (2015) ZnO nanorod-based non-enzymatic optical glucose biosensor. J Biomed Nanotechnol 11:988–996.  https://doi.org/10.1166/jbn.2015.2048 CrossRefPubMedGoogle Scholar
  8. 8.
    Mai HH, Pham VT, Nguyen VT, Sai CD, Hoang CH, Nguyen TB (2017) Non-enzymatic fluorescent biosensor for glucose sensing based on ZnO Nanorods. J Electron Mater 46:3714–3719.  https://doi.org/10.1007/s11664-017-5300-8 CrossRefGoogle Scholar
  9. 9.
    Sung YM, Noh K, Kwak WC, Kim TG (2012) Enhanced glucose detection using enzyme-immobilized ZnO/ZnS core/sheath nanowires. Sensors Actuators B Chem 161:453–459.  https://doi.org/10.1016/j.snb.2011.10.061 CrossRefGoogle Scholar
  10. 10.
    Zhang R, Yin P-G, Wang N, Guo L (2009) Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci 11:865–869.  https://doi.org/10.1016/j.solidstatesciences.2008.10.016 CrossRefGoogle Scholar
  11. 11.
    Hu M, Zhang X, Meng X (2009) Photoluminescence of ZnO nanorods grown by hydrothermal method on Si substrate. Wuhan Univ J Nat Sci 14:415–418.  https://doi.org/10.1007/s11859-009-0509-x CrossRefGoogle Scholar
  12. 12.
    Cheng H-M, Hsu TY-K et al (2005) Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires Epitaxially grown on GaN buffer layer. J Phys Chem B 109:8749–8754.  https://doi.org/10.1021/jp0442908 CrossRefPubMedGoogle Scholar
  13. 13.
    Scarpellini D, Paoloni S, Medaglia PG, Pizzoferrato R, Orsini A, Falconi C (2015) Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination. Mater Res Bull 65:231–237.  https://doi.org/10.1016/j.materresbull.2015.01.059 CrossRefGoogle Scholar
  14. 14.
    Kim K-E, Kim TG, Sung Y-M (2012) Enzyme-conjugated ZnO nanocrystals for collisional quenching-based glucose sensing. CrystEngComm 14:2859.  https://doi.org/10.1039/c2ce06410c CrossRefGoogle Scholar
  15. 15.
    Solanki PR, Kaushik A, Ansari AA, Malhotra BD (2009) Nanostructured zinc oxide platform for cholesterol sensor. Appl Phys Lett 94:143901.  https://doi.org/10.1063/1.3111429 CrossRefGoogle Scholar
  16. 16.
    Bustos-Torres KA, Vazquez-Rodriguez S, la Cruz AM, Sepulveda-Guzman S, Benavides R, Lopez-Gonzalez R, Torres-Martínez LM (2017) Influence of the morphology of ZnO nanomaterials on photooxidation of polypropylene/ZnO composites. Mater Sci Semicond Process 68:217–225.  https://doi.org/10.1016/j.mssp.2017.06.023 CrossRefGoogle Scholar
  17. 17.
    Zhao H, Li RKY (2006) A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer (Guildf) 47:3207–3217.  https://doi.org/10.1016/j.polymer.2006.02.089 CrossRefGoogle Scholar
  18. 18.
    Errico V, Arrabito G, Plant SR, Medaglia PG, Palmer RE, Falconi C (2015) Chromium inhibition and size-selected au nanocluster catalysis for the solution growth of low-density ZnO nanowires. Sci Rep 5:12336.  https://doi.org/10.1038/srep12336 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sun Y, Riley DJ, Ashfbld MNR (2006) Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J Phys Chem B 110:15186–15192.  https://doi.org/10.1021/jp062299z CrossRefPubMedGoogle Scholar
  20. 20.
    Jang J-M, Kim J-Y, Jung W-G (2008) Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process. Thin Solid Films 516:8524–8529.  https://doi.org/10.1016/j.tsf.2008.05.017 CrossRefGoogle Scholar
  21. 21.
    Van Thanh P, Mai HH, Tuyen NV et al (2017) Zinc oxide Nanorods grown on printed circuit Board for Extended-Gate Field-Effect Transistor pH sensor. J Electron Mater 46:1–6.  https://doi.org/10.1007/s11664-017-5369-0 CrossRefGoogle Scholar
  22. 22.
    Yang Z, Wang M, Shukla S, Zhu Y, Deng J, Ge H, Wang X, Xiong Q (2015) Developing seedless growth of ZnO micro/nanowire arrays towards ZnO/FeS2/CuI P-I-N photodiode application. Sci Rep 5:11377.  https://doi.org/10.1038/srep11377 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nayak J, Sahu SN, Kasuya J, Nozaki S (2008) Effect of substrate on the structure and optical properties of ZnO nanorods. J Phys D Appl Phys 41:115303CrossRefGoogle Scholar
  24. 24.
    Anderson DJ (1989) Determination of the lower limit of detection. Clin Chem 35:2152–2153PubMedGoogle Scholar
  25. 25.
    Ding Y, Chen M, Wu K, Chen M, Sun L, Liu Z, Shi Z, Liu Q (2017) High-performance peroxidase mimics for rapid colorimetric detection of H2O2 and glucose derived from perylene diimides functionalized Co3O4 nanoparticles. Mater Sci Eng C 80:558–565.  https://doi.org/10.1016/j.msec.2017.06.020 CrossRefGoogle Scholar
  26. 26.
    Jiang X, Sun C, Guo Y, Nie G, Xu L (2015) Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens Bioelectron 64:165–170.  https://doi.org/10.1016/j.bios.2014.08.078 CrossRefPubMedGoogle Scholar
  27. 27.
    Faccio G, Bannwarth MB, Schulenburg C, Steffen V, Jankowska D, Pohl M, Rossi RM, Maniura-Weber K, Boesel LF, Richter M (2016) Encapsulation of FRET-based glucose and maltose biosensors to develop functionalized silica nanoparticles. Analyst 141:3982–3984.  https://doi.org/10.1039/C5AN02573G CrossRefPubMedGoogle Scholar
  28. 28.
    Botta R, Rajanikanth A, Bansal C (2016) Silver nanocluster films for glucose sensing by surface enhanced Raman scattering (SERS). Sens Bio-Sensing Res 9:13–16.  https://doi.org/10.1016/j.sbsr.2016.05.001 CrossRefGoogle Scholar
  29. 29.
    Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y, Wang P, Zhou Z, Nie S, Wei H (2017) Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 11:5558–5566.  https://doi.org/10.1021/acsnano.7b00905 CrossRefPubMedGoogle Scholar
  30. 30.
    Talib AJ, Alkahtani M, Jiang L, Alghannam F, Brick R, Gomes CL, Scully MO, Sokolov AV, Hemmer PR (2018) Lanthanide ions doped in vanadium oxide for sensitive optical glucose detection. Opt Mater Express 8:3277–3287.  https://doi.org/10.1364/OME.8.003277 CrossRefGoogle Scholar
  31. 31.
    Safavi A, Maleki N, Farjami E (2009) Fabrication of a glucose sensor based on a novel nanocomposite electrode. Biosens Bioelectron 24:1655–1660.  https://doi.org/10.1016/j.bios.2008.08.040 CrossRefPubMedGoogle Scholar
  32. 32.
    Bourdon E, Loreau NBD (1999) Glucose and free radicals impair the antioxidant properties of serum albumin. PubMed 13:233–244Google Scholar
  33. 33.
    Zhou C, Xu L, Song J, Xing R, Xu S, Liu D, Song H (2014) Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci Rep 4:1–9.  https://doi.org/10.1038/srep07382 CrossRefGoogle Scholar
  34. 34.
    Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: recent developments. Sensors 17.  https://doi.org/10.3390/s17081866

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsVNU University of ScienceHanoiVietnam
  2. 2.Laboratory of Solid State Physics and Magnetism and Department of Physics and AstronomyKU LeuvenLeuvenBelgium

Personalised recommendations