Advertisement

Microchimica Acta

, 186:253 | Cite as

A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions

  • Dnyandeo PawarEmail author
  • Sangeeta N. Kale
Review Article
  • 248 Downloads

Abstract

The mesmerizing properties of nanomaterials and the features offered by optical fibers can be combined to result in an attractive new platform for chemical sensing. This review (with 230 refs.) summarizes the progress made in the past five years in the field of fiber-optic sensors: The first group comprises metals and metal oxides and their composites, and the second group comprises graphene, graphene oxides and CNTs, and its composites. By combining these nanocomposites with various optical fiber geometries, numerous sensors have been realized. Following an introduction, first section summarizes fiber-optic configuration for chemical sensing (including Fabry-Perot and Mach-Zehnder interferometry, surface plasmon resonance, and optical fiber gratings of the FBG and LPG type). The second section covers typical nanomaterials used in such sensors, with a first subsection on metals, metal oxides, their composites and nanostructured modifications, and a second subsection on graphenes, graphene oxides, carbon nanotubes, and their derivatives. Section 3 summarizes sensors (i) for various gaseous species (NH3, H2, CH4, H2S, CO2, NO2, O2), (ii) for volatile organic compounds (such as ethanol, methanol, acetone, toluene, and formaldehyde), and (iii) for heavy metal ions (such as Hg2+, Pb2+, Mg2+, Cd2+, Ni2+, and Mn2+). The merits and limitations of these nanomaterials and numerous examples for nanomaterial-based sensors are discussed and presented in the form of tables. A concluding section addresses technological challenges and future trends.

Graphical Abstract

Schematic presentation of an optical fiber modified with various nanomaterials such as metal oxides (MOXs), metals, carbon-nanotubes (CNTs) and graphene. Such sensors are based on several fiber-optic configurations like Fabry-Perot interferometers (FPI), Mach-Zehnder interferometer (MZI) (includes an in-line MZI), surface plasmon resonance (SPR) (includes coating on cladding and unclad part of an optical fiber) and fiber gratings (FGs) (includes fiber Bragg gratings (FBGs) and long-period gratings (LPGs), these are explored for detection of various gases (NH3, H2, H2S, CH4, O2, CO2), vapors (VOCs), and ions.

Keywords

Optical fiber sensors Interferometry Nanostructured materials Polymer Refractive index Selectivity Sensitivity Film thickness Diffusion Solubility parameters 

Notes

Acknowledgements

The authors acknowledge the support from the DIAT institute.

Compliance with ethical standards

The authors declare that they have no competing interests.

References

  1. 1.
    Lee B (2003) Review of the present status of optical fiber sensors. Opt Fiber Technol 9:57–79.  https://doi.org/10.1016/S1068-5200(02)00527-8 CrossRefGoogle Scholar
  2. 2.
    Wang X, Wolfbeis OS (2013) Fiber-Optic chemical sensors and biosensors (2008 − 2012). Anal Chem 85:487–508.  https://doi.org/10.1021/ac303159b CrossRefPubMedGoogle Scholar
  3. 3.
    Wang X, Wolfbeis OS (2016) Fiber-Optic chemical sensors and biosensors (2013 − 2015). Anal Chem 88:203–227.  https://doi.org/10.1021/acs.analchem.5b04298 CrossRefPubMedGoogle Scholar
  4. 4.
    Long F, Zhu A, Shi H, Wang H, Liu H (2013) Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci Rep 3:1–7.  https://doi.org/10.1038/srep02308 CrossRefGoogle Scholar
  5. 5.
    Lin Y, Zou Y, Lindquist RG (2011) A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed Opt Express 2:478.  https://doi.org/10.1364/BOE.2.000478 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pospíšilová M, Kuncová G, Trogl J (2015) Fiber-Optic chemical sensors and fiber-optic bio-sensors. Sensors 15:25208–25259.  https://doi.org/10.3390/s151025208 CrossRefPubMedGoogle Scholar
  7. 7.
    Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407:3883–3897.  https://doi.org/10.1007/s00216-014-8411-6 CrossRefPubMedGoogle Scholar
  8. 8.
    Elosua C, Arregui FJ, Villar ID, Ruiz-zamarreño C, Corres JM, Bariain C, Goicoechea J, Hernaez M, Rivero PJ, Socorro AB, Urrutia A, Sanchez P, Zubiate P, Lopez-torres D, Acha ND, Ascorbe J, Ozcariz A, Matias I (2017) Micro and nanostructured materials for the development of optical fibre sensors. Sensors 17:2312.  https://doi.org/10.3390/s17102312 CrossRefGoogle Scholar
  9. 9.
    Islam MR, Ali MM, Lai MH, Lim KS, Ahmad H (2014) Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review. Sensors 14:7451–7488.  https://doi.org/10.3390/s140407451 CrossRefPubMedGoogle Scholar
  10. 10.
    Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2:36–50.  https://doi.org/10.1002/smll.200500261 CrossRefPubMedGoogle Scholar
  11. 11.
    Rothschild A, Komem Y (2004) The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J Appl Phys 95:6374–6380.  https://doi.org/10.1063/1.1728314 CrossRefGoogle Scholar
  12. 12.
    Urrutia A, Goicoechea J, Arregui FJ (2015) Optical fiber sensors based on nanoparticle-embedded coatings. J sensors 805053:1–18.  https://doi.org/10.1155/2015/805053 CrossRefGoogle Scholar
  13. 13.
    Shi J, Zhu Y, Zhang X, Baeyens WRG, García-Campaña A (2004) Recent developments in nanomaterial optical sensors. Trends Anal Chem 23:351–360.  https://doi.org/10.1016/S0165-9936(04)00519-9 CrossRefGoogle Scholar
  14. 14.
    Liu Y, Li Y, Huang P, Song H, Zhang G (2016) Modeling of hydrogen atom diffusion and response behavior of hydrogen sensors in Pd–Y alloy nanofilm. Sci Rep:1–9.  https://doi.org/10.1038/srep37043
  15. 15.
    Kanamori M, Okamoto Y, Ohya Y, Takahashi Y (1995) Thickness Dependence of Sensitivity of SnO2 Film Gas Sensors. J Ceram Soc Japan 103:113–116.  https://doi.org/10.2109/jcersj.103.113 CrossRefGoogle Scholar
  16. 16.
    Korotcenkov G, Cho BK (2009) Thin film SnO2 -based gas sensors : Film thickness influence. Sens Actuators B Chem 142:321–330.  https://doi.org/10.1016/j.snb.2009.08.006 CrossRefGoogle Scholar
  17. 17.
    Yi L, You-ping C, Han S, Gang Z (2012) Hydrogen gas sensor based on palladium and yttrium alloy ultrathin film. Rev Sci Instrum 83:125003.  https://doi.org/10.1063/1.4770329 CrossRefPubMedGoogle Scholar
  18. 18.
    Zhu R, Wei Y, Scholl B, Schmitt HJ (1995) Modulation of the polarization state in an optical fiber coated with Langmuir–Blodgett films. J Appl Phys 78:1367–1369.  https://doi.org/10.1063/1.360312 CrossRefGoogle Scholar
  19. 19.
    Flannery D, James SW, Tatam RP, Ashwell GJ (1997) pH sensor using Langmuir-Blodgett overlays on polished optical fibers. Opt Lett 22:567–569.  https://doi.org/10.1364/OL.22.000567 CrossRefPubMedGoogle Scholar
  20. 20.
    Flannery D, James SW, Tatam RP, Ashwell GJ (1999) Fiber-optic chemical sensing with Langmuir–Blodgett overlay waveguides. Appl Opt 38:7370–7374.  https://doi.org/10.1364/AO.38.007370 CrossRefPubMedGoogle Scholar
  21. 21.
    Rees ND, James SW, Staines SE, Tatam RP, Ashwell G (2001) Submicrometer fiber-optic Fabry–Perot interferometer formed by use of the Langmuir–Blodgett technique. Opt Lett 26:1840–1842.  https://doi.org/10.1364/OL.26.001840 CrossRefPubMedGoogle Scholar
  22. 22.
    Quinn JF, Johnston APR, Such GK, Zelikin AN, Caruso F (2007) Next generation, sequentially assembled ultrathin films: Beyond electrostatics. Chem Soc Rev 36:707–718.  https://doi.org/10.1039/b610778h CrossRefPubMedGoogle Scholar
  23. 23.
    Goicoechea J, Zamarreño CR, Matías IR, Arregui FJ (2008) Optical fiber pH sensors based on layer-by-layer electrostatic self-assembled Neutral Red. Sensors Actuators, B Chem 132:305–311.  https://doi.org/10.1016/j.snb.2008.01.056 CrossRefGoogle Scholar
  24. 24.
    Arregui FJ, Matias IR, Corres JM, Villar ID, Goicoechea J, Zamarrenoa CR, Hernáez M, Claus R (2010) Optical fiber sensors based on layer-by-layer nanostructured films. Procedia Eng 5:1087–1090.  https://doi.org/10.1016/j.proeng.2010.09.299 CrossRefGoogle Scholar
  25. 25.
    Tian F, Kanka J, Sukhishvili SA, Du H (2012) Photonic crystal fiber for layer-by-layer assembly and measurements of polyelectrolyte thin films. Opt Lett 37:4299–4301.  https://doi.org/10.1364/OL.37.004299 CrossRefPubMedGoogle Scholar
  26. 26.
    Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:2491–1–11.  https://doi.org/10.1126/science.aaa2491 CrossRefGoogle Scholar
  27. 27.
    Breton M (1981) Formation and Possible Applications of Polymeric Langmuir-Blodgett Films. A Review. J Macromol Sci. Part C C21:61–87.  https://doi.org/10.1080/00222358108080925 CrossRefGoogle Scholar
  28. 28.
    Tretgold RH (1987) The physics of Langmuir-Blodgett films. Reports Prog Phys 50:1609–1656.  https://doi.org/10.1088/0034-4885/50/12/002 CrossRefGoogle Scholar
  29. 29.
    Hollars CW, Dunn RC (1998) Evaluation of thermal evaporation conditions used in coating aluminum on near-field fiber-optic probes. Rev Sci Instrum 69:1747–1752.  https://doi.org/10.1063/1.1148836 CrossRefGoogle Scholar
  30. 30.
    Tabassam R, Mishra SK, Gupta BD (2013) Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films. Phys Chem Chem Phys 15:11868–11874.  https://doi.org/10.1039/c3cp51525g CrossRefGoogle Scholar
  31. 31.
    Weber C, Schulz U, Muhlig C, Kaiser N, Tunnermann A (2016) Investigation of vacuum deposited hybrid coatings of protic organic UV absorbers embedded in a silica matrix used for the UV protection of Polycarbonate glazing. Opt Mater Express 6:3638–3650.  https://doi.org/10.1364/OME.6.003638 CrossRefGoogle Scholar
  32. 32.
    Dhar A, Paul MC, Pal M, Mondal AK, Sen S, Maiti HS, Sen R (2006) Characterization of porous core layer for controlling rare earth incorporation in optical fiber. Opt Express 14:9006–9015.  https://doi.org/10.1364/OE.14.009006 CrossRefPubMedGoogle Scholar
  33. 33.
    Sobon G, Sotor J, Pasternak I, Grodecki K, Paletko P, Strupinski W, Jankiewicz Z, Abramski K (2012) Er-Doped fiber laser mode-locked by CVD-graphene saturable absorber. J Light Technol 30:2770–2775.  https://doi.org/10.1109/JLT.2012.2207092 CrossRefGoogle Scholar
  34. 34.
    Karimi M, Ahmadi V, Ghezelsefloo M (2016) Graphene-based side-polished optical fiber amplifier. Appl Opt 55:10417–10422.  https://doi.org/10.1364/AO.55.010417 CrossRefPubMedGoogle Scholar
  35. 35.
    Ascorbe J, Corres JM, Villar ID, Arregui FJ, Matias I (2017) Fabrication of Bragg gratings on the end facet of standard optical fibers by sputtering the same material. J Light Technol 35:212–219.  https://doi.org/10.1109/JLT.2016.2640021 CrossRefGoogle Scholar
  36. 36.
    Cardona-Maya Y, Villar ID, Socorro AB, Corres JM, Matias IR, Botero-Cadavid J (2017) Wavelength and phase detection based SMS fiber sensors optimized with etching and nanodeposition. J Light Technol 35:3743–3749.  https://doi.org/10.1109/JLT.2017.2719923 CrossRefGoogle Scholar
  37. 37.
    Caucheteur C, Loyez M, González-Vila Á, Wattiez R (2018) Evaluation of gold layer configuration for plasmonic fiber grating biosensors. Opt Express 26:24154–24163.  https://doi.org/10.1364/OE.26.024154 CrossRefPubMedGoogle Scholar
  38. 38.
    Yin M, Gu B, An Q et al (2018) Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 376:348–392.  https://doi.org/10.1016/j.ccr.2018.08.001 CrossRefGoogle Scholar
  39. 39.
    Wolfbeis OS (2000) Fiber-Optic chemical sensors and biosensors. Anal Chem 72:81–89.  https://doi.org/10.1021/a1000013k CrossRefGoogle Scholar
  40. 40.
    Wolfbeis OS (2002) Fiber-Optic chemical sensors and biosensors. Anal Chem 74:2663–2678.  https://doi.org/10.1021/ac020176e CrossRefPubMedGoogle Scholar
  41. 41.
    Wolfbeis OS (2004) Fiber-Optic chemical sensors and biosensors. Anal Chem 76:3269–3284.  https://doi.org/10.1021/ac040049d CrossRefPubMedGoogle Scholar
  42. 42.
    Wolfbeis OS (2006) Fiber-Optic chemical sensors and biosensors. Anal Chem 78:3859–3874.  https://doi.org/10.1021/ac060490z CrossRefPubMedGoogle Scholar
  43. 43.
    Wolfbeis OS (2008) Fiber-optic chemical sensors and biosensors. Anal Chem 80:4269–4283.  https://doi.org/10.1021/ac800473b CrossRefPubMedGoogle Scholar
  44. 44.
    Rani M, Shukla S, Sharma NK, Sajal V (2014) Theoretical study of nanocomposites based fiber optic SPR sensor. Opt Commun 313:303–314.  https://doi.org/10.1016/j.optcom.2013.10.048 CrossRefGoogle Scholar
  45. 45.
    Zhao Y, Deng Z, Li J (2014) Photonic crystal fiber based surface plasmon resonance chemical sensors. Sensors Actuators B Chem 202:557–567.  https://doi.org/10.1016/j.snb.2014.05.127 CrossRefGoogle Scholar
  46. 46.
    Sharma AK, Kumar A, Kaur B (2018) A Review of advancements (2007 – 2017) in plasmonics-based optical fiber sensors. Opt Fiber Technol 43:20–34.  https://doi.org/10.1016/j.yofte.2018.03.008 CrossRefGoogle Scholar
  47. 47.
    Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A, Mahdiraji GA, Yun SH, Adikan F (2017) Photonic crystal fiber based plasmonic sensors. Sens Actuators B Chem 243:311–325.  https://doi.org/10.1016/j.snb.2016.11.113 CrossRefGoogle Scholar
  48. 48.
    Lee BH, Kim YH, Park KS, Eom JB, Kim MJ, Rho BS, Choi HY (2012) Interferometric fiber optic sensors. Sensors 12:2467–2486.  https://doi.org/10.3390/s120302467 CrossRefPubMedGoogle Scholar
  49. 49.
    Choi HY, Kim MJ, Lee BH (2007) All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt Express 15:5711–5720.  https://doi.org/10.1364/OE.15.005711 CrossRefPubMedGoogle Scholar
  50. 50.
    Pawar D, Rao CN, Choubey RK, Kale SN (2016) Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections. Appl Phys Lett 041912:0–4.  https://doi.org/10.1063/1.4940983 CrossRefGoogle Scholar
  51. 51.
    Ran ZL, Rao YJ, Liu WJ, Liao X, Chiang K (2008) Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index. Opt Express 16:2252–2263.  https://doi.org/10.1364/OE.16.002252 CrossRefPubMedGoogle Scholar
  52. 52.
    Li X, Shao Y, Yu Y, Zhang Y, Wei S (2016) A highly sensitive fiber-optic fabry–perot interferometer based on internal reflection mirrors for refractive index measurement. Sensors 16:1–12.  https://doi.org/10.3390/s16060794 CrossRefGoogle Scholar
  53. 53.
    Yu CB, Wu Y, Li C, Wu F, Zhou J-H, Gong Y, Rao Y-J, Chen Y-F (2017) Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film. Opt Mater Express 7:2111–2116.  https://doi.org/10.1364/OME.7.002111 CrossRefGoogle Scholar
  54. 54.
    Wang R, Qiao X (2014) Intrinsic Fabry-Perot interferometeric sensor based on microfiber created by chemical etching. Sensors 14:16808–16815.  https://doi.org/10.3390/s140916808 CrossRefPubMedGoogle Scholar
  55. 55.
    Pawar D, Mane SA, Kale SN (2017) Bromothymol blue coated fiber optic Fabry-Perot interferometer for ammonia gas sensor. Proc SPIE 10323:1–4.  https://doi.org/10.1117/12.2265406 CrossRefGoogle Scholar
  56. 56.
    Wang R, Qiao X (2014) Hybrid optical fiber Fabry – Perot interferometer for simultaneous measurement of gas refractive index and temperature. Appl Opt 53:7724–7728.  https://doi.org/10.1364/AO.53.007724 CrossRefPubMedGoogle Scholar
  57. 57.
    Tang J, Yin G, Liao C, Liu S, Li Z, Zhong X, Wang Q, Zhao J, Yang K, Wang Y (2015) High-Sensitivity gas pressure sensor based on Fabry – Perot interferometer with a side-opened channel in hollow-core photonic bandgap fiber. IEEE Photonics J 7:6803307.  https://doi.org/10.1109/JPHOT.2015.2489926 CrossRefGoogle Scholar
  58. 58.
    Ma W, Wang R, Rong Q, Shao Z, Zhang W, Guo T, Wang J, Qiao X (2017) CO2 gas sensing using optical fiber Fabry-Perot interferometer based on Polyethyleneimine/Poly(Vinyl Alcohol) coating. IEEE Photonics J 9:6802808.  https://doi.org/10.1109/JPHOT.2017.2700053 CrossRefGoogle Scholar
  59. 59.
    Li L, Xia L, Xie Z, Liu D (2012) All-fiber Mach-Zehnder interferometers for sensing applications. Opt Express 20:11109–11120.  https://doi.org/10.1364/OE.20.011109 CrossRefPubMedGoogle Scholar
  60. 60.
    Pawar D, Kale SN (2016) Birefringence manipulation in tapered polarization-maintaining photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing. Sens Actuators A Phys 252:180–184.  https://doi.org/10.1016/j.sna.2016.10.032 CrossRefGoogle Scholar
  61. 61.
    Andrews NLP, Rachel R, Dorit M, Van HC, Andrew B, Barnes JA, Oliver R, Loock H-P (2016) In-fiber Mach-Zehnder interferometer for gas refractive index measurements based on a hollow-core photonic crystal fiber. Opt Express 24:14086–14099.  https://doi.org/10.1364/OE.24.014086 CrossRefPubMedGoogle Scholar
  62. 62.
    Huang X, Li X, Yang J, Tao C, Guo X, Bao H, Yin Y, Chen H, Zhu Y (2017) An in-line Mach-Zehnder interferometer using thin-core fiber for ammonia gas sensing with high sensitivity. Sci Rep 7:44994.  https://doi.org/10.1038/srep44994
  63. 63.
    Gupta BD, Kant R (2018) Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt Laser Technol 101:144–161.  https://doi.org/10.1016/j.optlastec.2017.11.015 CrossRefGoogle Scholar
  64. 64.
    Jorgenson RC, Yee SS (1993) A fiber optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12:213–220.  https://doi.org/10.1016/0925-4005(93)80021-3 CrossRefGoogle Scholar
  65. 65.
    Wang Q, Zhao W (2018) A comprehensive review of lossy mode resonance-based fiber optic sensors. Opt Lasers Eng 100:47–60.  https://doi.org/10.1016/j.optlaseng.2017.07.009 CrossRefGoogle Scholar
  66. 66.
    Chryssis AN, Lee SM, Lee SB, Saini SS, Dagenais M (2005) High sensitivity evanescent field fiber Bragg grating sensor. IEEE Photonics Technol Lett 17:1253–1255.  https://doi.org/10.1109/LPT.2005.846953 CrossRefGoogle Scholar
  67. 67.
    Shivananju BN, Prashanth GR, Asokan S, Varma MM (2014) Reversible and irreversible pH induced conformational changes in self-assembled weak polyelectrolyte multilayers probed using etched fiber Bragg grating sensors. Sensors Actuators, B Chem 201:37–45.  https://doi.org/10.1016/j.snb.2014.04.082 CrossRefGoogle Scholar
  68. 68.
    Liang W, Yanyi H, Xu Y, Lee RK, Yariv A (2005) Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett 86:151122.  https://doi.org/10.1063/1.1904716 CrossRefGoogle Scholar
  69. 69.
    Baldini F, Brenci M, Chiavaioli F, Giannetti A, Trono C (2012) Optical fibre gratings as tools for chemical and biochemical sensing. Anal Bioanal Chem 402:109–116.  https://doi.org/10.1007/s00216-011-5492-3 CrossRefPubMedGoogle Scholar
  70. 70.
    Francesco C, Baldini F, Sara T, Cosimo T, Giannetti A (2017) Biosensing with optical fiber gratings. Nanophotonics 6:663–679.  https://doi.org/10.1515/nanoph-2016-0178 CrossRefGoogle Scholar
  71. 71.
    James SW, Korposh S, Lee S, Tatam RP (2014) A long period grating-based chemical sensor insensitive to the influence of interfering parameters. Opt Express 22:8012–8023.  https://doi.org/10.1364/OE.22.008012 CrossRefPubMedGoogle Scholar
  72. 72.
    Hromadka J, Korposh S, Partridge MC, James SW, Davis F, Crump D, Tatam R (2017) Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring. Sensors Actuators B Chem 244:217–225.  https://doi.org/10.1016/j.snb.2016.12.050 CrossRefGoogle Scholar
  73. 73.
    Partridge MWR, James SW, Davis F, Higson SPJ, Tatam R (2014) Long period grating based toluene sensor for use with water contamination. Sensors Actuators, B Chem 203:621–625.  https://doi.org/10.1016/j.snb.2014.06.121 CrossRefGoogle Scholar
  74. 74.
    Hromadka JTB, James S, Tatam RP, Korposh S (2015) Optical fibre long period grating gas sensor modified with metal organic framework thin films. Sensors Actuators B Chem 221:891–899.  https://doi.org/10.1016/j.snb.2015.07.027 CrossRefGoogle Scholar
  75. 75.
    Hromadka J, Tokay BCR, Morgan SP, Korposh S (2018) Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8. Sensors Actuators B Chem 260:685–692.  https://doi.org/10.1016/j.snb.2018.01.015 CrossRefGoogle Scholar
  76. 76.
    Wu C, Wu C, Chiang C (2016) A ZnO nanoparticle-coated long period fiber grating as a carbon dioxide gas sensor. Inventions 1:21.  https://doi.org/10.3390/inventions1040021 CrossRefGoogle Scholar
  77. 77.
    Tabassum R, Gupta BD (2015) Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing palladium supported zinc oxide multilayers and their nanocomposite. Appl Opt 54:1032–1040.  https://doi.org/10.1364/AO.54.001032 CrossRefPubMedGoogle Scholar
  78. 78.
    Mishra SK, Rani S, Gupta BD (2014) Surface plasmon resonance based fiber optic hydrogen sulphide gas sensor utilizing nickel oxide doped ITO thin film. Sensors Actuators B Chem 195:215–222.  https://doi.org/10.1016/j.snb.2014.01.045 CrossRefGoogle Scholar
  79. 79.
    Zhou F, Qiu SJ, Luo W, Xu F, Lu Y (2014) An all-fiber reflective hydrogen sensor based on a photonic crystal fiber in-line interferometer. IEEE Sens J 14:1133–1136.  https://doi.org/10.1109/JSEN.2013.2293347 CrossRefGoogle Scholar
  80. 80.
    Dai J, Yang M, Yang Z, Li ZWY, Wang G, Zhang Y, Zhuang Z (2014) Enhanced sensitivity of fiber Bragg grating hydrogen sensor using flexible substrate. Sensors Actuators B Chem 196:604–609.  https://doi.org/10.1016/j.snb.2014.02.069 CrossRefGoogle Scholar
  81. 81.
    Raj DR, Prasanth S, Vineeshkumar T, Sudarsanakumar C (2015) Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Opt Commun 340:86–92.  https://doi.org/10.1016/j.optcom.2014.11.092 CrossRefGoogle Scholar
  82. 82.
    Li Y, Shen W, Zhao C, Xu B, Wang D, Yang M (2018) Optical hydrogen sensor based on PDMS-formed double-C type cavities with embedded Pt-loaded WO3/SiO2. Sensors Actuators B Chem 276:23–30.  https://doi.org/10.1016/j.snb.2018.08.019 CrossRefGoogle Scholar
  83. 83.
    Kitture R, Pawar D, Rao C, Choubey R, Kale S (2017) Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA. J Alloys Compd 695:2091–2096.  https://doi.org/10.1016/j.jallcom.2016.11.048 CrossRefGoogle Scholar
  84. 84.
    Wu Y, Yao BC, Zhang AQ, Cao XL, Wang ZG, Rao YJ, Gong Y, Zhang W, Chen YF, Chiang K (2014) Graphene-based D-shaped fiber multicore mode interferometer for chemical gas sensing. Opt Lett 39:6030–6033.  https://doi.org/10.1364/OL.39.006030 CrossRefPubMedGoogle Scholar
  85. 85.
    Xiao Y, Yu J, Shun L, Tan S, Cai X, Luo Y, Zhang J, Dong H, Lu H, Guan H, Zhong Y, Tang J, Chen Z (2016) Reduced graphene oxide for fiber-optic toluene gas sensing. Opt Express 24:28290–28302.  https://doi.org/10.1364/OE.24.028290 CrossRefPubMedGoogle Scholar
  86. 86.
    Parveen S, Pathak A, Gupta BD (2017) Fiber optic SPR nanosensor based on synergistic effects of CNT/Cu-nanoparticles composite for ultratrace sensing of nitrate. Sensors Actuators B Chem 246:910–919.  https://doi.org/10.1016/j.snb.2017.02.170 CrossRefGoogle Scholar
  87. 87.
    Mishra SK, Tripathi SN (2015) Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite. Plasmonics 10:1147.  https://doi.org/10.1007/s11468-015-9914-5 CrossRefGoogle Scholar
  88. 88.
    Shabaneh A, Girei S, Arasu P, Mahdi M, Rashid S, Paiman S, Yaacob M (2015) Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application. Sensors 15:10452–10464.  https://doi.org/10.3390/s150510452 CrossRefPubMedGoogle Scholar
  89. 89.
    Usha SP, Mishra SK, Gupta B (2015) Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: a comparison of surface plasmon resonance and lossy mode resonance. Sensors Actuators B Chem 218:196–204.  https://doi.org/10.1016/j.snb.2015.04.108 CrossRefGoogle Scholar
  90. 90.
    Subramanian MDV, Sastikumar D, Shanmugavadivel M (2018) Development of room temperature fiber optic gas sensor using clad modified Zn3(VO4)2. J Alloys Compd 750:153–163.  https://doi.org/10.1016/j.jallcom.2018.02.186 CrossRefGoogle Scholar
  91. 91.
    Poole ZL, Ohodnicki P (2014) Chen R, et al. Engineering metal oxide nanostructures for the fiber optic sensor platform. 22:2009–2013.  https://doi.org/10.1364/OE.22.002665 CrossRefGoogle Scholar
  92. 92.
    Subashini T, Renganathan B, Stephen A, Prakash T (2018) Acetone sensing behaviour of optical fiber clad-modified with γ -CuBr nanocrystals. Mater Sci Semicond Process 88:181–185.  https://doi.org/10.1016/j.mssp.2018.08.015 CrossRefGoogle Scholar
  93. 93.
    González-sierra NE, Gómez-pavón LDC, Pérez-sánchez GF, Luis-ramos A, Zaca-morán P, Munoz-Pacheco JM, Chávez-ramírez F (2017) Tapered optical fiber Functionalized with palladium nanoparticles by drop casting and laser radiation for H2 and Volatile Organic Compounds Sensing Purposes. Sensors 17:2039.  https://doi.org/10.3390/s17092039 CrossRefGoogle Scholar
  94. 94.
    Geim AK (2009) Graphene : Status and prospects. Science 324(80):1530–1534.  https://doi.org/10.1126/science.1158877 CrossRefPubMedGoogle Scholar
  95. 95.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306(80):666–669.  https://doi.org/10.1126/science.1102896 CrossRefPubMedGoogle Scholar
  96. 96.
    Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang K (2014) Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Opt Lett 39:1235–1237.  https://doi.org/10.1364/OL.39.001235 CrossRefPubMedGoogle Scholar
  97. 97.
    Feng X, Feng W, TaO C, Deng D, Qin X, Chen R (2017) Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sensors Actuators B Chem 247:540–545.  https://doi.org/10.1016/j.snb.2017.03.070 CrossRefGoogle Scholar
  98. 98.
    Arasu PT, Noor ASM, Shabanesh AA, Yaacob MH, Lim HN, Mahdi M (2016) Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer. Opt Commun 380:260–266.  https://doi.org/10.1016/j.optcom.2016.05.081 CrossRefGoogle Scholar
  99. 99.
    Xiao Y, Yang Q, Wang Z, Zhang R, Gao Y, Sun P, Sun Y, Lu G (2016) Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide. Sensors Actuators B Chem 227:419–426.  https://doi.org/10.1016/j.snb.2015.11.051 CrossRefGoogle Scholar
  100. 100.
    Mishra AK, Mishra SK, Verma RK (2016) Graphene and beyond graphene MoS2: A new window in surface-plasmon-resonance-based fiber optic sensing. J Phys Chem C 120:2893–2900.  https://doi.org/10.1021/acs.jpcc.5b08955 CrossRefGoogle Scholar
  101. 101.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58.  https://doi.org/10.1038/354056a0 CrossRefGoogle Scholar
  102. 102.
    Iijima S, Ichihashi T (1993) Single-shell carbon nanotube of 1-nm diameter. Nature 363:603–605.  https://doi.org/10.1038/363603a0 CrossRefGoogle Scholar
  103. 103.
    Pawar D, Rao BVB, Kale SN (2018) Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry–Perot interferometer. Analyst 143:1890–1898.  https://doi.org/10.1039/c7an01891f CrossRefPubMedGoogle Scholar
  104. 104.
    Yao B, Wu Y, Cheng Y, Zhang A, Gong Y, Rao YJ, Wang Z, Chen Y (2014) All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sensors Actuators, B Chem 194:142–148.  https://doi.org/10.1016/j.snb.2013.12.085 CrossRefGoogle Scholar
  105. 105.
    Yu CB, Wu Y, Liu XL, Yao BC, Fu F, Gong Y, Rao YJ, Chen Y (2016) Graphene oxide deposited microfiber knot resonator for gas sensing. Opt Mater Express 6:727–733.  https://doi.org/10.1364/OME.6.000727 CrossRefGoogle Scholar
  106. 106.
    Fu H, Jiang Y, Ding J, Zhang J, Zhang M, Zhu Y, Li H (2017) Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sensors Actuators B Chem 254:239–247.  https://doi.org/10.1016/j.snb.2017.06.067 CrossRefGoogle Scholar
  107. 107.
    Khalaf AL, Mohamad FS, Rahman NA, Lim HN, Paiman S, Yusof NA, Mahdi MA, Yaacob M (2017) Room temperature ammonia sensor using side-polished optical fiber coated with graphene/polyaniline nanocomposite. Opt Mater Express 7:1858–1870.  https://doi.org/10.1364/OME.7.001858 CrossRefGoogle Scholar
  108. 108.
    Hao T, Chiang K (2017) Graphene-based ammonia-gas sensor using in-fiber Mach-Zehnder interferometer. IEEE PHOTONICS Technol Lett 29:2035–2038.  https://doi.org/10.1109/LPT.2017.2761981 CrossRefGoogle Scholar
  109. 109.
    Yao BC, Wu Y, Zhang AQ, Rao YJ, Wang ZG, Cheng Y, Gong Y, Zhang WL, Chen YF, Chiang K (2014) Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt Express 22:64–67.  https://doi.org/10.1364/OE.22.028154 CrossRefGoogle Scholar
  110. 110.
    Zhang A, Wu Y, Yao B, Gong Y (2015) Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing. Photonic Sensors 5:84–90.  https://doi.org/10.1007/s13320-014-0216-x CrossRefGoogle Scholar
  111. 111.
    Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2014) SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sensors Actuators, B Chem 199:190–200.  https://doi.org/10.1016/j.snb.2014.03.109 CrossRefGoogle Scholar
  112. 112.
    Pawar D, Rao BVB, Kale SN (2016) Highly porous graphene coated optical fiber in Fabry-Perot interferometric mode for NH3 gas sensing. Int Conf Fibre Opt Photonics 2016:1–3.  https://doi.org/10.1364/PHOTONICS.2016.Tu4A.58 CrossRefGoogle Scholar
  113. 113.
    Sasone L, Malachovska V, Manna PL, Musto P, Borriello A, Luca GD, Giordano M (2014) Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sensors Actuators B Chem 202:523–526.  https://doi.org/10.1016/j.snb.2014.05.067 CrossRefGoogle Scholar
  114. 114.
    Zhao Y, Li X, Zhou X, Zhang Y (2016) Review on the graphene based optical fiber chemical and biological sensors. Sensors Actuators B Chem 231:324–340.  https://doi.org/10.1016/j.snb.2016.03.026 CrossRefGoogle Scholar
  115. 115.
    Wu Y, Yao B, Yu C, Rao Y (2018) Optical Graphene Gas Sensors Based on Microfibers: A review. Sensors 18:941.  https://doi.org/10.3390/s18040941 CrossRefGoogle Scholar
  116. 116.
    Ugale AD, Jagtap RV, Pawar D, Datar S, Kale SN, Alegaonkar P (2016) Nano-carbon: preparation, assessment, and applications for NH3 gas sensor and electromagnetic interference shielding. RSC Adv 6:97266–97275.  https://doi.org/10.1039/c6ra17422a CrossRefGoogle Scholar
  117. 117.
    Pathak A, Mishra SK, Gupta B (2015) Fiber-optic ammonia sensor using Ag/SnO2 thin films: optimization of thickness of SnO2 film using electric field distribution and reaction factor. Appl Opt 54:8712–8721.  https://doi.org/10.1364/AO.54.008712 CrossRefPubMedGoogle Scholar
  118. 118.
    Devendiran S, Sastikumar D (2017) Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber. Opt Laser Technol 89:186–191.  https://doi.org/10.1016/j.optlastec.2016.10.013 CrossRefGoogle Scholar
  119. 119.
    Renganathan B, Sastikumar D, Srinivasan R, Ganesan AR (2014) Nanocrystalline samarium oxide coated fiber optic gas sensor. Mater Sci Eng B 186:122–127.  https://doi.org/10.1016/j.mseb.2014.03.018 CrossRefGoogle Scholar
  120. 120.
    Tiwari D, Mullaney K, Korposh S, James SW, Lee SW, Tatam R (2017) An ammonia sensor based on lossy mode resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide. Sensors Actuators B Chem 242:645–652.  https://doi.org/10.1016/j.snb.2016.11.092 CrossRefGoogle Scholar
  121. 121.
    Yu C, Wu Y, Liu X, Fu F, Gong Y, Rao YJ, Chen Y (2017) Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sensors Actuators B Chem 244:107–113.  https://doi.org/10.1016/j.snb.2016.12.126 CrossRefGoogle Scholar
  122. 122.
    Manjula M, Karthikeyan B, Sastikumar D (2017) Sensing characteristics of nanocrystalline bismuth oxide clad-modified fiber optic gas sensor. Opt Lasers Eng 95:78–82.  https://doi.org/10.1016/j.optlaseng.2017.04.003 CrossRefGoogle Scholar
  123. 123.
    Kavinkumar T, Manivannan S (2016) Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection. Ceram Int 42:1769–1776.  https://doi.org/10.1016/j.ceramint.2015.09.138 CrossRefGoogle Scholar
  124. 124.
    Renganathan B, Sastikumar D, Raj SG, Ganesan AR (2014) Fiber optic gas sensors with vanadium oxide and tungsten oxide nanoparticle coated claddings. Opt Commun 315:74–78.  https://doi.org/10.1016/j.optcom.2013.10.072 CrossRefGoogle Scholar
  125. 125.
    Zhu Y, Fu H, Ding J, Li H, Zhang M, Zhang J, Liu Y (2018) Fabrication of three-dimensional zinc oxide nanoflowers for high-sensitivity fiber-optic ammonia gas sensors. Appl Opt 57:7924–7930.  https://doi.org/10.1364/AO.57.007924 CrossRefPubMedGoogle Scholar
  126. 126.
    Zheng S, Ghandehari M, Ou J (2016) Photonic crystal fiber long-period grating absorption gas sensor based on a tunable erbium-doped fiber ring laser. Sensors Actuators B Chem 223:324–332.  https://doi.org/10.1016/j.snb.2015.09.083 CrossRefGoogle Scholar
  127. 127.
    Mishra SK, Bhardwaj S, Gupta BD (2015) Surface plasmon resonance-based fiber optic sensor for the detection of low concentrations of ammonia gas. IEEE Sens J 15:1235–1239.  https://doi.org/10.1109/JSEN.2014.2356251 CrossRefGoogle Scholar
  128. 128.
    Manjula M, Karthikeyan B, Sastikumar D (2018) Sensing characteristics of clad-modified (Ho-doped Bi2O3 nanoparticles) fibre optic gas sensor. Opt Fiber Technol 45:35–39.  https://doi.org/10.1016/j.yofte.2018.05.009 CrossRefGoogle Scholar
  129. 129.
    Ruan S, Lu J, Pai N, Ebendorff-Heiderpriem H, Cheng YB, Ruan Y, McNeill C (2018) Optical fibre-based sensor for the detection of gaseous ammonia with methylammonium lead halide perovskite. J Mater Chem C 6:6988–6995.  https://doi.org/10.1039/C8TC01552J CrossRefGoogle Scholar
  130. 130.
    Dai J, Zhu L, Wang G, Xiang F, Qin Y, Wang M, Yang M (2017) Optical fiber grating hydrogen sensors: A review. Sensors 17:577.  https://doi.org/10.3390/s17030577 CrossRefGoogle Scholar
  131. 131.
    Javahiraly N (2015) Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium designs with palladium. Opt Eng 54:030901.  https://doi.org/10.1117/1.OE.54.3.030901 CrossRefGoogle Scholar
  132. 132.
    Zhang Y, Peng H, Qian X, Zhang Y, An G, Zhao Y (2017) Recent advancements in optical fiber hydrogen sensors. Sensors Actuators B Chem 244:393–416.  https://doi.org/10.1016/j.snb.2017.01.004 CrossRefGoogle Scholar
  133. 133.
    Yu Z, Jin L, Sun L, Li J, Ran Y, Guan B (2016) Highly sensitive fiber taper interferometric hydrogen sensors highly sensitive fiber taper interferometric hydrogen sensors. IEEE Photonics J 8:6800309.  https://doi.org/10.1109/JPHOT.2015.2507369 CrossRefGoogle Scholar
  134. 134.
    Yu C, Chen X, Liu Q, Gong Y (2015) Fiber-optic Fabry-Perot hydrogen sensor coated with Pd-Y film. Photonic Sensors 5:1–4.  https://doi.org/10.1007/s13320-015-0237-0 CrossRefGoogle Scholar
  135. 135.
    Yahya NAM, Hamid MRS, Ibrahim SA, Ong BH, Rahman NA, Zain ARM, Mahdi MA, Yaacob M (2017) H2 sensor based on tapered optical fiber coated with MnO2 nanostructures. Sensors Actuators B Chem 246:421–427.  https://doi.org/10.1016/j.snb.2017.02.084 CrossRefGoogle Scholar
  136. 136.
    Sun C, Ohodnicki PR, Yu Y (2017) Double-layer zeolite nano-blocks and palladium-based nanocomposite fiber optic sensors for selective hydrogen sensing at room temperature. IEEE Sens J 1:1500504.  https://doi.org/10.1109/LSENS.2017.2754142 CrossRefGoogle Scholar
  137. 137.
    Tabassum R, Gupta BD (2016) Fiber optic hydrogen gas sensor utilizing surface plasmon resonance and native defects of zinc oxide by palladium. J Opt 18:015004.  https://doi.org/10.1088/2040-8978/18/1/015004 CrossRefGoogle Scholar
  138. 138.
    Yan H, Zhao X, Zhang C, Li QZ, Cao J, Han DF, Hao H, Wang M (2016) A fast response hydrogen sensor with Pd metallic grating onto a fiber’s end face. Opt Commun 359:157–161.  https://doi.org/10.1016/j.optcom.2015.09.041 CrossRefGoogle Scholar
  139. 139.
    Zhang Y, Zhang L, Han B, Peng H, Zhou T, Lv R (2018) Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing. Opt Laser Technol 102:262–267.  https://doi.org/10.1016/j.optlastec.2018.01.016 CrossRefGoogle Scholar
  140. 140.
    Zhao Y, Wu Q, Zhang Y (2017) High-Sensitive Hydrogen Sensor Based on Photonic Crystal Fiber Model Interferometer. IEEE Trans Instrum Meas 66:2198–2203.  https://doi.org/10.1109/TIM.2017.2676141 CrossRefGoogle Scholar
  141. 141.
    Zhang Y, Wu Q, Peng H et al (2016) Photonic crystal fiber modal interferometer with Pd/WO3 coating for real-time monitoring of dissolved hydrogen concentration in transformer oil. Rev Sci Instrum 87:125002.  https://doi.org/10.1063/1.4971321 CrossRefPubMedGoogle Scholar
  142. 142.
    Shao J, Xie W, Song X, Zhang Y (2017) A new hydrogen sensor based on SNS fiber interferometer with Pd/WO3 coating. Sensors 17:2144.  https://doi.org/10.3390/s17092144 CrossRefGoogle Scholar
  143. 143.
    Zhang Y, Peng H, Zhou T, Zhang L, Zhang Y, Zhao Y (2017) Hydrogen sensor based on high-birefringence fiber loop mirror with sol-gel Pd/WO3 coating. Sensors Actuators B Chem 248:71–76.  https://doi.org/10.1016/j.snb.2017.03.155 CrossRefGoogle Scholar
  144. 144.
    Yan A, Chen R, Zaghloul M, Poole ZL, Ohodnicki P, Chen K (2016) Sapphire Fiber Optical Hydrogen Sensors for High-Temperature Environments. IEEE PHOTONICS Technol Lett 28:47–50.  https://doi.org/10.1109/LPT.2015.2479563 CrossRefGoogle Scholar
  145. 145.
    Eryurek M, Karadag Y, Tasaltin N, Kilinc N, Kiraz A (2015) Optical sensor for hydrogen gas based on a palladium-coated polymer microresonator. Sensors Actuators B Chem 212:78–83.  https://doi.org/10.1016/j.snb.2015.01.097 CrossRefGoogle Scholar
  146. 146.
    Gu F, Wu G, Zeng H (2015) Hybrid photon–plasmon Mach–Zehnder interferometers for highly sensitive hydrogen sensing. Nanoscale 7:924–929.  https://doi.org/10.1039/c4nr06642a CrossRefPubMedGoogle Scholar
  147. 147.
    Jiang J, Member S, Ma G et al (2015) Highly sensitive dissolved hydrogen sensor based on side-polished fiber bragg grating. IEEE Photonics Technol Lett 27:1453–1546.  https://doi.org/10.1109/LPT.2015.2425894 CrossRefGoogle Scholar
  148. 148.
    Karanja JM, Dai Y, Zhou X, Liu B, Yang N (2015) Micro-structured femtosecond laser assisted FBG hydrogen sensor. Opt Express 23:31034–31042.  https://doi.org/10.1364/OE.23.031034 CrossRefPubMedGoogle Scholar
  149. 149.
    Coelho C, Almeida J, Santos J, Viegas D (2015) Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium. Appl Opt 54:10342–10348.  https://doi.org/10.1364/AO.54.010342 CrossRefPubMedGoogle Scholar
  150. 150.
    Wang M, Wang DN, Yang M, Cheng J, Li J (2014) In-line Mach-Zehnder Interferometer and FBG with Pd film for simultaneous hydrogen and temperature detection. Sensors Actuators B Chem 202:893–896.  https://doi.org/10.1016/j.snb.2014.05.132 CrossRefGoogle Scholar
  151. 151.
    Yu Z, Jin L, Chen L, Li J, Ran Y, Guan B (2015) Microfiber bragg grating hydrogen sensors. IEEE Photon Technol Lett 27:2575–2578.  https://doi.org/10.1109/LPT.2015.2478445 CrossRefGoogle Scholar
  152. 152.
    Ma GM, Jiang J, Li CR, Song HT, Luo YT, Wang H (2015) Pd/Ag coated fiber Bragg grating sensor for hydrogen monitoring in power transformers. Rev Sci Instrum 86:045003.  https://doi.org/10.1063/1.4918802 CrossRefPubMedGoogle Scholar
  153. 153.
    Luo Y, Wang H, Ma G, Song H, Li C, Jiang J (2016) Research on high sensitive D-shaped FBG hydrogen sensors in power transformer oil. Sensors 16:1641.  https://doi.org/10.3390/s16101641 CrossRefGoogle Scholar
  154. 154.
    Zhou X, Dai Y, Zou M, Karanja J, Yang M (2016) FBG hydrogen sensor based on spiral microstructure ablated by femtosecond laser. Sensors Actuators B Chem 236:392–398.  https://doi.org/10.1016/j.snb.2016.06.027 CrossRefGoogle Scholar
  155. 155.
    Li Y, Zhao C, Xu B, Wang D, Yang M (2018) Optical cascaded Fabry – Perot interferometer hydrogen sensor based on vernier effect. Opt Commun 414:166–171.  https://doi.org/10.1016/j.optcom.2017.12.012 CrossRefGoogle Scholar
  156. 156.
    Ki Z, Yang M, Dai J, Wang J, Wang G, Huang C, Tang J, Hu W, Song H, Huang P (2015) Optical fiber hydrogen sensor based on evaporated Pt/WO3 film. Sensors Actuators B Chem 206:564–569.  https://doi.org/10.1016/j.snb.2014.09.093 CrossRefGoogle Scholar
  157. 157.
    Wu B, Zhao C, Xu B, Li Y (2018) Optical fiber hydrogen sensor with single Sagnac interferometer loop based on vernier effect. Sensors Actuators B Chem 255:3011–3016.  https://doi.org/10.1016/j.snb.2017.09.124 CrossRefGoogle Scholar
  158. 158.
    Zhang G, Yang M, Wang Y (2014) Optical fiber-tip Fabry-Perot interferometer for hydrogen sensing. Opt Commun 329:34–37.  https://doi.org/10.1016/j.optcom.2014.04.084 CrossRefGoogle Scholar
  159. 159.
    Tang S, Zhang B, Li Z, Dai J, Wang G, Yang M (2015) Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration. Opt Express 23:22826–22835.  https://doi.org/10.1364/OE.23.022826 CrossRefPubMedGoogle Scholar
  160. 160.
    Masuzawa S, Okazaki S, Maru Y, Mizutani T (2015) Catalyst-type-an optical fiber sensor for hydrogen leakage based on fiber Bragg gratings. Sensors Actuators B Chem 217:151–157.  https://doi.org/10.1016/j.snb.2014.10.026 CrossRefGoogle Scholar
  161. 161.
    Dai J, Yang M, Yang Z, Li Z, Wang Y, Wang G, Zhang Y, Zhuang Z (2014) Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating. Sensors Actuators B Chem 190:657–663.  https://doi.org/10.1016/j.snb.2013.08.083 CrossRefGoogle Scholar
  162. 162.
    Yang S, Dai J, Qin Y, Xiang F, Wang G, Yang M (2018) Improved performance of fiber optic hydrogen sensor based on MoO3 by ion intercalation. Sensors Actuators B Chem 270:333–340.  https://doi.org/10.1016/j.snb.2018.05.060 CrossRefGoogle Scholar
  163. 163.
    Yang M, Wang G, Dai J, Yang Z, Li Z, Wang Y, Zhang Y, Zhuang Z (2014) Fiber Bragg grating sensors with Pt-loaded WO3 coatings for hydrogen concentration detection down to 200 ppm. Meas Sci Technol 25:114004.  https://doi.org/10.1088/0957-0233/25/11/114004 CrossRefGoogle Scholar
  164. 164.
    Dai J, Peng W, Wang G, Xiang F, Qin Y, Wang M, Yang M, Deng H, Zhang P (2017) Improved performance of fiber optic hydrogen sensor based on WO3-Pd2Pt-Pt composite film and self-referenced demodulation method. Sensors Actuators B Chem 249:210–216.  https://doi.org/10.1016/j.snb.2017.04.103 CrossRefGoogle Scholar
  165. 165.
    Schultz A, Brown T, Buric M, Lee S, Gerdes K, Ohodnicki P (2015) High temperature fiber-optic evanescent wave hydrogen sensors using La-doped SrTiO3 for SOFC applications. Sensors Actuators B Chem 221:1307–1313.  https://doi.org/10.1016/j.snb.2015.07.046 CrossRefGoogle Scholar
  166. 166.
    Song H, Chen Y, Zhang G, Liu Y, Huang P, Zhao H, Yang M, Dai J, Li Z (2015) Optical fiber hydrogen sensor based on an annealing-stimulated Pd – Y thin film. Sensors Actuators B Chem 216:11–16.  https://doi.org/10.1016/j.snb.2015.03.090 CrossRefGoogle Scholar
  167. 167.
    Samsudin R, Shee YG, Adikan FRM, Dahari M (2016) Fiber Bragg gratings (FBG) hydrogen sensor for monitoring the degradation of transformer oil. IEEE Sensors 16:2993 – 2999 . doi:  https://doi.org/10.1109/JSEN.2016.2517214
  168. 168.
    Xu B, Li P, Wang DN, Zhao C, Dai J, Yang M (2017) Hydrogen sensor based on polymer-filled hollow core fiber with Pt-loaded WO3/SiO2 coating. Sensors Actuators B Chem 245:516–523.  https://doi.org/10.1016/j.snb.2017.01.206 CrossRefGoogle Scholar
  169. 169.
    Liu Y, Li Y (2016) Enhanced sensitivity of transmission based optical fiber hydrogen sensor with multi-layer Pd – Y alloy thin film. Sensors Actuators B Chem 227:178–184.  https://doi.org/10.1016/j.snb.2015.11.112 CrossRefGoogle Scholar
  170. 170.
    Ohodnicki PR, Baltrus J, Brown T (2015) Pd/SiO2 and AuPd/SiO2 nanocomposite-based optical fiber sensors for H2 sensing applications. Sensors Actuators B Chem 214:159–168.  https://doi.org/10.1016/j.snb.2015.02.076 CrossRefGoogle Scholar
  171. 171.
    Poole ZL, Ohodonicki PR, Yan A, Lin Y, Chen K (2016) The potential to detect hydrogen concentration gradients with palladium infused mesoporous-titania on D-shaped optical fiber. ACS Sensors 2:87–91.  https://doi.org/10.1021/acssensors.6b00583 CrossRefPubMedGoogle Scholar
  172. 172.
    Zhong X, Yang M, Huang C, Wang G, Dai J, Bai W (2016) Water photolysis effect on the long-term stability of a fiber optic hydrogen sensor with Pt/WO3. Sci Rep 6:39160.  https://doi.org/10.1038/srep39160 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Yang M, Dai J (2014) Fiber optic hydrogen sensors: a review. Photonic Sensors 4:300–324.  https://doi.org/10.1007/s13320-014-0215-y CrossRefGoogle Scholar
  174. 174.
    Yang J, Zhou L, Huang J, Tao C, Li X, Chen W (2015) Sensitivity enhancing of transition mode long-period fiber grating as methane sensor using high refractive index polycarbonate/cryptophane A overlay deposition. Sensors Actuators B Chem 207:477–480.  https://doi.org/10.1016/j.snb.2014.10.013 CrossRefGoogle Scholar
  175. 175.
    Yang J, Zhou L, Che X, Huang J, Li X, Chen W (2016) Photonic crystal fiber methane sensor based on modal interference with an ultraviolet curable fluoro-siloxane nano- film incorporating cryptophane A. Sensors Actuators B Chem 235:717–722.  https://doi.org/10.1016/j.snb.2016.05.125 CrossRefGoogle Scholar
  176. 176.
    Yang J, Che X, Shen R, Wang C, Li X, Chen W (2017) High-sensitivity photonic crystal fiber long- period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm. Opt Express 25:20258–20267.  https://doi.org/10.1364/OE.25.020258 CrossRefPubMedGoogle Scholar
  177. 177.
    Li H, Wang M, Wang Q, Li H, Ding Y, Zhu C (2018) Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes. Opt Fiber Technol 45:1–7.  https://doi.org/10.1016/j.yofte.2018.05.007 CrossRefGoogle Scholar
  178. 178.
    Allosp T, Kundrat V, Kalli K, Lee G, Neal R, Bond P, Shi B, Sullivan J, Culverhouse P, Webb D (2017) Methane detection scheme based upon the changing optical constants of a zinc oxide/platinum matrix created by a redox reaction and their effect upon surface plasmons. Sensors Actuators B Chem 255:843–853.  https://doi.org/10.1016/j.snb.2017.08.058 CrossRefGoogle Scholar
  179. 179.
    Li S, Li X, Yang J, Zhou L, Che X, Binbin L (2016) Novel reflection-type optical fiber methane sensor based on a no- core fiber structure. Mater Today Proc 3:439–442.  https://doi.org/10.1016/j.matpr.2016.01.039 CrossRefGoogle Scholar
  180. 180.
    Zhang JY, Ding EJ, Xu SC, Li ZH, Wang XX, Song F (2017) Sensitization of an optical fiber methane sensor with graphene. Opt fiber Technol 37:26–29.  https://doi.org/10.1016/j.yofte.2017.06.011 CrossRefGoogle Scholar
  181. 181.
    Qin X, Feng W, Yang X, Wei J, Huang G (2018) Molybdenum sulfide/citric acid composite membrane-coated long period fiber grating sensor for measuring trace hydrogen sulfide gas. Sensors Actuators B Chem 272:60–68.  https://doi.org/10.1016/j.snb.2018.05.152 CrossRefGoogle Scholar
  182. 182.
    Wysokinski K, Napierała M, Stanczyk T, Lipinski S, Nasiłowski R (2015) Study on the sensing coating of the optical fibre CO2 sensor. Sensors 15:31888–31903.  https://doi.org/10.3390/s151229890 CrossRefPubMedGoogle Scholar
  183. 183.
    Sridevi S, Vasu KS, Bhat N, Asokan S, Sood A (2016) Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings. Sensors Actuators B Chem 223:481–486.  https://doi.org/10.1016/j.snb.2015.09.128 CrossRefGoogle Scholar
  184. 184.
    Debliquy M, Lahem D, Bueno-Martinez A, Caucheteur C, Bouvet M, Recloux I, Raskin J, Olivier M (2018) Optical fibre NO2 sensor based on lutetium bisphthalocyanine in a mesoporous silica matrix. Sensors 18:740.  https://doi.org/10.3390/s18030740 CrossRefGoogle Scholar
  185. 185.
    Acha N, Elosua C, Matias IR, Arregui F (2016) Enhancement of luminescence-based optical fiber oxygen sensors by tuning the distance between fluorophore layers. Sensors Actuators B Chem 248:836–847.  https://doi.org/10.1016/j.snb.2016.12.081 CrossRefGoogle Scholar
  186. 186.
    Elosua C, Acha N, Hernaez M, Matias IR, Arregui F (2015) Layer-by-Layer assembly of a water – insoluble platinum complex for optical fiber oxygen sensors. Sensors Actuators B Chem 207:683–689.  https://doi.org/10.1016/j.snb.2014.10.042 CrossRefGoogle Scholar
  187. 187.
    Zolkapli M, Saharudin S, Herman SH, Abdullah WFH (2018) Quasi-distributed sol-gel coated fiber optic oxygen sensing probe. Opt Fiber Technol 41:109–117.  https://doi.org/10.1016/j.yofte.2017.12.016 CrossRefGoogle Scholar
  188. 188.
    Semwal V, Shrivastav AM, Verma R, Gupta BD (2016) Surface plasmon resonance based fiber optic ethanol sensor using layers of silver/silicon/hydrogel entrapped with ADH/NAD. Sensors Actuators B Chem 230:485–492.  https://doi.org/10.1016/j.snb.2016.02.084 CrossRefGoogle Scholar
  189. 189.
    Sharifpour-boushehri S, Hosseini-golgoo SM, Sheikhi M (2015) A low cost and reliable fiber optic ethanol sensor based on nano-sized SnO2. Opt Fiber Technol 24:93–99.  https://doi.org/10.1016/j.yofte.2015.05.002 CrossRefGoogle Scholar
  190. 190.
    Zhang C, Li Z, Jiang SZ, Li CH, Xu SC, Yu J, Li Z, Wang MH, Liu AH, Man B (2017) U-bent fiber optic SPR sensor based on graphene/AgNPs. Sensors Actuators B Chem 251:127–133.  https://doi.org/10.1016/j.snb.2017.05.045 CrossRefGoogle Scholar
  191. 191.
    Gong B, Shi T, Zhu W, Liao G, Li X, Huang J, Zhou T (2017) UV irradiation-assisted ethanol detection operated by the gas sensor based on ZnO nanowires/optical fiber hybrid structure. Sensors Actuators B Chem 245:821–827.  https://doi.org/10.1016/j.snb.2017.01.187 CrossRefGoogle Scholar
  192. 192.
    Khalaf AL, Arasu PT, Lim HN, Paiman S, Yusof NA, Mahdi MA, Yaacob M (2017) Modified plastic optical fiber with CNT and graphene oxide nanostructured coatings for ethanol liquid sensing. Opt Express 25:5509–5520.  https://doi.org/10.1364/OE.25.005509 CrossRefPubMedGoogle Scholar
  193. 193.
    Hernaez M, Mayes AG, Melendi-Espina S (2018) Graphene oxide in lossy mode resonance-based optical fiber sensors for ethanol detection. Sensors 18:58.  https://doi.org/10.3390/s18010058 CrossRefGoogle Scholar
  194. 194.
    Zhang J, Fu H, Ding J, Zhang M, Zhu Y (2017) Graphene-oxide-coated interferometric optical microfiber ethanol vapor sensor. Appl Opt 56:8828–8831.  https://doi.org/10.1364/AO.56.008828 CrossRefPubMedGoogle Scholar
  195. 195.
    Babeva T, Andreev A, Grand J, Vasileva M, Karakoleva E, Zafirov BS, Georgieva B, Koprinarova J, Mintova S (2017) Optical fiber – Ta2O5 waveguide coupler covered with hydrophobic zeolite film for vapor sensing. Sensors Actuators B Chem 248:359–366.  https://doi.org/10.1016/j.snb.2017.03.157 CrossRefGoogle Scholar
  196. 196.
    Paul D, Dutta S, Saha D, Biswas R (2017) LSPR based Ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing. Sensors Actuators B Chem 250:198–207.  https://doi.org/10.1016/j.snb.2017.04.171 CrossRefGoogle Scholar
  197. 197.
    Tabassum S, Kumar R, Dong L (2017) Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing. IEEE Sens J 17:7262–7272.  https://doi.org/10.1109/JSEN.2017.2748593 CrossRefGoogle Scholar
  198. 198.
    Pawar D, Kitture R, Kale SN (2017) ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation crossmark studies. Opt Laser Technol 89:46–53.  https://doi.org/10.1016/j.optlastec.2016.09.038 CrossRefGoogle Scholar
  199. 199.
    Echeverría JC, Faustini M, Garrido J (2015) Effects of the porous texture and surface chemistry of silica xerogels on the 1 sensitivity of fiber-optic sensors toward VOCs. Sensors Actuators B Chem 222:1166–1174.  https://doi.org/10.1016/j.snb.2015.08.010 CrossRefGoogle Scholar
  200. 200.
    Wu B, Zhao C, Kang J, Wang D (2017) Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end. Opt Fiber Technol 34:91–97.  https://doi.org/10.1016/j.yofte.2017.01.010 CrossRefGoogle Scholar
  201. 201.
    Monteiro-Silva F, Santos JL, Almeida JMMM, Coelho L (2017) Quantification of ethanol concentration in gasoline using cuprous oxide coated long period fiber gratings. IEEE Sens J 18:1493–1500.  https://doi.org/10.1109/JSEN.2017.2782566 CrossRefGoogle Scholar
  202. 202.
    Kanawade R, Kumar A, Pawar D, Late D, Mondal S, Sinha RK (2019) Fiber optic Fabry -Perot interferometer sensor: an efficient and fast approach for ammonia gas sensing. J Opt Soc Am B Res 36:684–689.  https://doi.org/10.1364/JOSAB.36.000684 CrossRefGoogle Scholar
  203. 203.
    Jia S, Bian C, Sun J, Tong J, XIa S (2018) A wavelength-modulated localized surface plasmon resonance (LSPR) optical fi ber sensor for sensitive detection of mercury (II) ion by gold nanoparticles-DNA conjugates. Biosens Bioelectron 114:15–21.  https://doi.org/10.1016/j.bios.2018.05.004 CrossRefPubMedGoogle Scholar
  204. 204.
    Raj DR, Prasanth S, Vineeshkumar T, Sudarsanakumar C (2016) Surface plasmon resonance based fiber optic sensor for mercury detection using gold nanoparticles PVA hybrid. Opt Commun 367:102–107.  https://doi.org/10.1016/j.optcom.2016.01.027 CrossRefGoogle Scholar
  205. 205.
    Tan S, Lee S, Okazaki T, Kuramitz H, Abd-Rahman F (2018) Detection of mercury (II) ions in water by polyelectrolyte – gold nanoparticles coated long period fiber grating sensor. Opt Commun 419:18–24.  https://doi.org/10.1016/j.optcom.2018.02.069 CrossRefGoogle Scholar
  206. 206.
    Zhang Y, Zhang L, Han B, Gao P, Wu Q, Zhang A (2018) Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating. Sensors Actuators B Chem 272:331–339.  https://doi.org/10.1016/j.snb.2018.05.168 CrossRefGoogle Scholar
  207. 207.
    Boruah BS, Biswas R (2018) Localized surface plasmon resonance based U-shaped optical fiber probe for the detection of Pb2+ in aqueous medium. Sensors Actuators B Chem 276:89–94.  https://doi.org/10.1016/j.snb.2018.08.086 CrossRefGoogle Scholar
  208. 208.
    Shuo J, Chao B, Jian-Hua T, Ji-Zhou S, Shan-Hong X (2017) A Fiber-optic sensor based on plasmon coupling effects in gold nanoparticles core-satellites nanostructure for determination of mercury ions (II). Chinese J Anal Chem 45:785–790.  https://doi.org/10.1016/S1872-2040(17)61017-X CrossRefGoogle Scholar
  209. 209.
    Ruan S, Ebendor-Heidepriem H, Ruan Y (2018) Optical fibre turn-on sensor for the detection of mercury based on immobilized fluorophore. Measurement 121:122–126.  https://doi.org/10.1016/j.measurement.2018.01.071 CrossRefGoogle Scholar
  210. 210.
    Liu C, Sun Z, Zhang L, Lv J, Yu X, Zhang L, Chen X (2018) Black phosphorus integrated tilted fiber grating for ultrasensitive heavy metal sensing. Sensors Actuators B Chem 257:1093–1098.  https://doi.org/10.1016/j.snb.2017.11.022 CrossRefGoogle Scholar
  211. 211.
    Verma R, Gupta BD (2015) Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem 166:568–575.  https://doi.org/10.1016/j.foodchem.2014.06.045 CrossRefPubMedGoogle Scholar
  212. 212.
    Raghunandhan R, Chen LH, Long HY, Leam LL, So PL, Ning X, Chan C (2016) Chitosan/PAA based fiber-optic interferometric sensor for heavy metal ions detection. Sensors Actuators B Chem 233:31–38.  https://doi.org/10.1016/j.snb.2016.04.020 CrossRefGoogle Scholar
  213. 213.
    Yang J, Chen LH, Zheng Y, Dong X, Raghunandhan R, So PL, Chan C (2016) Heavy metal ions probe with relative measurement of fiber Bragg grating. Sensors Actuators B Chem 230:353–358.  https://doi.org/10.1016/j.snb.2016.02.038 CrossRefGoogle Scholar
  214. 214.
    Tabassum R, Gupta BD (2015) Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films. Analyst 140:1863–1870.  https://doi.org/10.1039/c4an01588f CrossRefPubMedGoogle Scholar
  215. 215.
    Yasin M, Irawati N, Isa NM, Harun SW, Ahmad F (2018) MWCNTs coated silica microfiber sensor for detecting Mg2+ in de- ionized water. Opt - Int J Light Electron Opt 171:65–70.  https://doi.org/10.1016/j.ijleo.2018.05.132 CrossRefGoogle Scholar
  216. 216.
    Tabassum R, Gupta BD (2015) Fiber optic manganese ions sensor using SPR and nanocomposite of ZnO-polypyrrole. Sensors Actuators, B Chem 220:903–909.  https://doi.org/10.1016/j.snb.2015.06.018 CrossRefGoogle Scholar
  217. 217.
    Mishra SK, Gupta BD (2014) Surface plasmon resonance based fiber optic sensor for the detection of CrO4 2- using Ag/ITO/hydrogel layers. Anal Methods 6:5191–5197.  https://doi.org/10.1039/c4ay00830h CrossRefGoogle Scholar
  218. 218.
    Tabassum R, Gupta BD (2016) Tailoring the field distribution of ZnO by polyaniline for SPR-based fiber optic detection of hardness of the drinking water. Plasmonics 11:483–492.  https://doi.org/10.1007/s11468-015-0079-z CrossRefGoogle Scholar
  219. 219.
    Zhu PQ, Wang JJ, Rao F, Yu C, Zhou G, Huang XG (2019) Differential Fresnel-reflection-based fiber biochemical sensor with temperature self-compensation for high-resolution measurement of Cd2+ concentration in solution. Sensors Actuators B Chem 282:644–649.  https://doi.org/10.1016/j.snb.2018.11.126 CrossRefGoogle Scholar
  220. 220.
    Kishore PVN, Shankar MS, Satyanarayana M (2017) Detection of trace amounts of chromium ( VI ) using hydrogel coated Fiber Bragg grating. Sensors Actuators B Chem 243:626–633.  https://doi.org/10.1016/j.snb.2016.12.017 CrossRefGoogle Scholar
  221. 221.
    Yang R, Xu Z, Zeng S, Jing W, Trontz A, Dong J (2018) A Fiber optic interferometric sensor platform for determining gas diffusivity in zeolite films. Sensors 18:1–18.  https://doi.org/10.3390/s18041090 CrossRefGoogle Scholar
  222. 222.
    Kim K, Lu P, Culp JT, Ohodnicki PR (2018) Metal-organic framework thin film coated optical fiber sensors : a novel waveguide-based chemical sensing platform. ACS Sensors 3:386–384.  https://doi.org/10.1021/acssensors.7b00808 CrossRefPubMedGoogle Scholar
  223. 223.
    Bellot CM, Olivero M, Sangermano M, Salvo M (2018) Towards self-diagnosis composites: Detection of moisture diffusion through epoxy by embedded evanescent wave optical fibre sensors. Polym Test. 71:248–254.  https://doi.org/10.1016/j.polymertesting.2018.09.019 CrossRefGoogle Scholar
  224. 224.
    Park CS, Han Y, Joo K, Lee YW, Kang SW, Kim HR (2010) Optical detection of volatile organic compounds using selective tensile effects of a polymer-coated fiber Bragg grating. Opt Express 18:24753–24761.  https://doi.org/10.1364/OE.18.024753 CrossRefPubMedGoogle Scholar
  225. 225.
    Bae M, Lim JA, Kim S, Song Y (2013) Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer. Opt Express 21(2):2018–2023.  https://doi.org/10.1364/OE.21.002018 CrossRefPubMedGoogle Scholar
  226. 226.
    Rattanabut C, Wongwiriyapan W, Muangrat W, Bunjongpru W, Phonyiem M, Song Y (2018) Graphene and poly (methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection. Jpn J Appl Phys 54:04FP10.  https://doi.org/10.7567/JJAP.57.04FP10 CrossRefGoogle Scholar
  227. 227.
    Kanawade R, Kumar A, Pawar D, Vairagi K, Late D, Sarkar S, Sinha RK, Mondol S (2019) Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing. Opt Express 27:7277–7290.  https://doi.org/10.1364/OE.27.007277
  228. 228.
    Belmares M, Blanco M, Goddard WA et al (2004) Hildebrand and Hansen solubility parameters from molecular dynamics with applications to electronic nose polymer sensors. J Comput Chem 25:1814–1826.  https://doi.org/10.1002/jcc.20098 CrossRefPubMedGoogle Scholar
  229. 229.
    Batchelor JC, Holder SJ (2015) Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors. J Mater Chem C 3:10091–10098.  https://doi.org/10.1039/c5tc01927c CrossRefGoogle Scholar
  230. 230.
    Gupta D, Dutta D, Kumar M, Barman PB, Sarkar CK, Basu S, Hazra S (2014) A low temperature hydrogen sensor based on palladium nanoparticles. Sensors Actuators B Chem 196:215–222.  https://doi.org/10.1016/j.snb.2014.01.106 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Advanced Materials and Sensors Division (V4)CSIR-Central Scientific Instruments OrganisationChandigarhIndia
  2. 2.Department of Applied PhysicsDefence Institute of Advanced TechnologyPuneIndia

Personalised recommendations