Microchimica Acta

, 186:247 | Cite as

Rapid and selective fluorometric determination of tannic acid using MoO3-x quantum dots

  • Xinnan Liu
  • Wentao Zhang
  • Chengyuan Yang
  • Yuan Yao
  • Lunjie Huang
  • Sihang Li
  • Jianlong Wang
  • Yanwei JiEmail author
Original Paper


The authors describe a fluorometric method for the quantification of tannic acid (TA). MoO3-x quantum dots (QDs) can selectively capture TA via the formation of an organic molybdate complex. This causes an electron transfer effect and an inner filter effect to result in synergistic quenching of the fluorescence of the QDs. TA can be detected via this effect with a linear response in the of 0.1–10 μM concentration range and a lower detection limit of 30 nM within 1 min. The use of such QDs as a quenchable fluorescent probe warrants good selectivity even in the presence of relatively high concentration of potentially interferents and makes the method suitable for real sample analysis.

Graphical abstract

Tannic acid can be rapidly and selectively detected in food using a MoO3-x quantum dots based fluorometric assay.


MoO3-x QDs Fluorescent detection Organic molybdate complexes Dynamic quenching High selectivity 



This research was supported by the National Natural Science Foundation of China (21675127), the Shaanxi Provincial Science Fund for Distinguished Young Scholars (2018JC-011) and the Postdoctoral Innovation Talents Support Program (BX20180263).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3311_MOESM1_ESM.docx (335 kb)
ESM 1 (DOCX 335 kb)


  1. 1.
    Revelette MR, Barak JA, Kennedy JA (2014) High-performance liquid chromatography determination of red wine tannin stickiness. J Agric Food Chem 62(28):6626–6631CrossRefGoogle Scholar
  2. 2.
    Shi Y, Yang L, Zhu J, Yang J, Liu S, Qiao M, Duan R, Hu X (2017) Resonance Rayleigh scattering technique for simple and sensitive analysis of tannic acid with carbon dots. Spectrochim Acta A 173:817–821CrossRefGoogle Scholar
  3. 3.
    Li G, Hong L, Tong M, Deng H, Xia X, Chen W (2015) Determination of tannic acid based on luminol chemiluminescence catalyzed by cupric oxide nanoparticles. Anal Methods-UK 7(5):1924–1928CrossRefGoogle Scholar
  4. 4.
    Gu LW, Kelm MA, Hammerstone JF, Beecher G, Holden J, Haytowitz D, Prior RL (2003) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J Agric Food Chem 51(25):7513–7521CrossRefGoogle Scholar
  5. 5.
    Yacco RS, Watrelot AA, Kennedy JA (2016) Red wine tannin structure-activity relationships during fermentation and maceration. J Agric Food Chem 64(4):860–869CrossRefGoogle Scholar
  6. 6.
    Rodriguez H, de las Rivas B, Gomez-Cordoves C, Munoz R (2008) Degradation of tannic acid by cell-free extracts of lactobacillus plantarum. Food Chem 107(2):664–670CrossRefGoogle Scholar
  7. 7.
    Yilmaz UT, Calik E, Uzun D, Karipcin F, Yilmaz H (2016) Selective and sensitive determination of tannic acid using a. 1-benzoyl-3-(pyrrolidine) thiourea film modified glassy carbon electrode. Electroanal Chem 776:1–8CrossRefGoogle Scholar
  8. 8.
    Labieniec M, Gabryelak T (2006) Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method. J Photochem Photobiol B 82(1):72–78CrossRefGoogle Scholar
  9. 9.
    Chen Z, Zhang X, Cao H, Huang Y (2013) Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols. Analyst 138(8):2343–2349CrossRefGoogle Scholar
  10. 10.
    Gomez-Taylor Corominas B, Garcia Mateo JV, Lahuerta Zamora L, Martinez Calatayud J (2002) Determination of tannic acid by direct chemiluminescence in a FIA assembly. Talanta 58(6):1243–1251CrossRefGoogle Scholar
  11. 11.
    Xie C, Li H (2010) Determination of tannic acid in industrial wastewater based on chemiluminescence system of KIO4-H2O2-Tween40. Luminescence 25(5):350–354CrossRefGoogle Scholar
  12. 12.
    Soares da Silva FG, Cerqueira dos Santos GK, Neto SY, Silva Luz RC, Damos FS (2018) Self-powered sensor for tannic acid exploiting visible LED light as excitation source. Electrochim Acta 274:67–73CrossRefGoogle Scholar
  13. 13.
    Zhu J, Ng J, Filippich LJ (1992) Determination of tanninc-acid and its phenolic metabolites in biological-fluidsby high-performance-liquid-chromatography. J Chromatogr 577(1):77–85CrossRefGoogle Scholar
  14. 14.
    Wan H, Zou Q, Yan R, Zhao F, Zeng B (2007) Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode. Microchim Acta 159(1–2):109–115CrossRefGoogle Scholar
  15. 15.
    Dai Long V, Ertek B, Cervenka L, Dilgin Y (2013) Determination of tannic acid using silica gel modified carbon paste electrode. Int J Electrochem 8(7):9278–9286Google Scholar
  16. 16.
    Xiao S, Zhao X, Hu P, Chu Z, Huang C, Zhang L (2016) Highly photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2,4,6-trinitrotoluene determination. ACS Appl Mater Interfaces 8(12):8184–8191CrossRefGoogle Scholar
  17. 17.
    Xiao S, Chu Z, Zhao X, Zhang Z, Liu Y (2017) Off-on-off detection of the activity of acetylcholine esterase and its inhibitors using MoOx quantum dots as a photoluminescent probe. Microchim Acta 184(12):4853–4860CrossRefGoogle Scholar
  18. 18.
    Ding D, Guo W, Guo C, Sun J, Zheng N, Wang F, Yan M, Liu S (2017) MoO3-x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale 9(5):2020–2029CrossRefGoogle Scholar
  19. 19.
    Chang K, Chen RLC, Hsieh B, Chen P, Hsiao H, Nieh C, Cheng T (2010) A hand-held electronic tongue based on fluorometry for taste assessment of tea. Biosens Bioelectron 26(4):1507–1513CrossRefGoogle Scholar
  20. 20.
    Krishnan CV, Chen J, Burger C, Chu B (2006) Polymer-assisted growth of molybdenum oxide whiskers via a sonochemical process. J Phys Chem B 110(41):20182–20188CrossRefGoogle Scholar
  21. 21.
    Cheng H, Kamegawa T, Mori K, Yamashita H (2014) Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew Chem Int Ed 53(11):2910–2914CrossRefGoogle Scholar
  22. 22.
    Zhang W, Shi S, Zhu W, Yang C, Li S, Liu X, Hu N, Huang L, Wang R, Suo Y, Li Z, Wang J (2017) InsSitu fixation of all-inorganic Mo-Fe-S clusters for the highly selective removal of Lead(II). ACS Appl Mater Interfaces 9(38):32720–32726CrossRefGoogle Scholar
  23. 23.
    Ding D, Huang W, Song C, Yan M, Guo C, Liu S (2017) Non-stoichiometric MoO3-x quantum dots as a light-harvesting material for interfacial water evaporation. Chem Commun 53(50):6744–6747CrossRefGoogle Scholar
  24. 24.
    Song J, Ni X, Zhang D, Zheng H (2006) Fabrication and photoluminescence propertips of hexagonal MoO3 rods. Solid State Sci 8(10):1164–1167CrossRefGoogle Scholar
  25. 25.
    Xia T, Li Q, Liu X, Meng J, Cao X (2006) Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. J Phys Chem B 110(5):2006–2012CrossRefGoogle Scholar
  26. 26.
    Shu Y, Xue W, Xu X, Jia Z, Yao X, Liu S, Liu L (2015) Interaction of erucic acid with bovine serum albumin using a multi-spectroscopic method and molecular docking technique. Food Chem 173:31–37CrossRefGoogle Scholar
  27. 27.
    Liu X, Zhang W, Huang L, Hu N, Liu W, Liu Y, Li S, Yang C, Suo Y, Wang J (2018) Fluorometric determination of dopamine by using molybdenum disulfide quantum dots. Microchim Acta 185(4)Google Scholar
  28. 28.
    Kaur M, Mehta SK, Kansal SK (2017) Nitrogen doped graphene quantum dots: efficient fluorescent chemosensor for the selective and sensitive detection of 2,4,6-trinitrophenol. Sensors Actuators B Chem 245:938–945CrossRefGoogle Scholar
  29. 29.
    Xu H, Yang X, Li G, Zhao C, Liao X (2015) Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem 63(30):6707–6714CrossRefGoogle Scholar
  30. 30.
    Sahoo D, Mandal A, Mitra T, Chakraborty K, Bardhan M, Dasgupta AK (2018) Nanosensing of pesticides by zinc oxide quantum dot: an optical and electrochemical approach for the detection of pesticides in water. J Agric Food Chem 66(2):414–423CrossRefGoogle Scholar
  31. 31.
    Yue X, Liu L, Li Z, Yang Q, Zhu W, Zhang W, Wang J (2018) Highly specific and sensitive determination of propyl gallate in food by a novel fluorescence sensor. Food Chem 256:45–52CrossRefGoogle Scholar
  32. 32.
    Sinduja B, John SA (2016) Sensitive determination of tannic acid using blue luminescent graphene quantum dots as fluorophore. RSC Adv 6(65):59900–59906CrossRefGoogle Scholar
  33. 33.
    Zhang W, Shi S, Wang Y, Yu S, Zhu W, Zhang X, Zhang D, Yang B, Wang X, Wang J (2016) Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale 8(22):11642–11648CrossRefGoogle Scholar
  34. 34.
    Li G, Fu H, Chen X, Gong P, Chen G, Xia L, Wang H, You J, Wu Y (2016) Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal Chem 88(5):2720–2726CrossRefGoogle Scholar
  35. 35.
    Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Xinnan Liu
    • 1
  • Wentao Zhang
    • 1
  • Chengyuan Yang
    • 1
  • Yuan Yao
    • 1
  • Lunjie Huang
    • 1
  • Sihang Li
    • 1
  • Jianlong Wang
    • 1
  • Yanwei Ji
    • 1
    Email author
  1. 1.College of Food Science and EngineeringNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations