Advertisement

Microchimica Acta

, 186:151 | Cite as

Upconversion fluorescent aptasensor for bisphenol A and 17β-estradiol based on a nanohybrid composed of black phosphorus and gold, and making use of signal amplification via DNA tetrahedrons

  • Shuyue Ren
  • Qiaofeng Li
  • Ye Li
  • Shuang Li
  • Tie Han
  • Jiang Wang
  • Yuan Peng
  • Jialei Bai
  • Baoan Ning
  • Zhixian GaoEmail author
Original Paper
  • 26 Downloads

Abstract

This study describes an upconversion fluorescent aptasensor based on black phosphorus nanohybrids and self-assembled DNA tetrahedrons dual-amplification strategy for rapid detection of the environmental estrogens bisphenol A (BPA) and 17β-estradiol (E2). Tetrahedron complementary DNAs (T-cDNAs) were self-assembled in an oriented fashion on a 2D nanohybrid composed of black phosphorus (BP) and gold to give a materials of architecture BP-Au@T-cDNAs. In parallel, core-shell upconversion nanoparticles were modified with aptamers (UCNPs@apts) and used as capture probes. On complementary pairing, the BP-Au@T-cDNA quench the fluorescence of UCNPs@apts (measured at an excitation wavelength 808 nm and at main emission peaks at 545 nm and 805 nm.) Compared with single-stranded probes based on black phosphorus and gold, the dual-amplification strategy increases quenching efficiency by nearly 25%–30% and reduces capture time to 10 min. This is due to the higher optical absorption of 2D nanohybrid and the reduction of steric hindrance by T-cDNAs. Exposure to BPA or E2 cause the release of UCNPs@apts from the BP-Au@T-cDNAs due to stronger binding between aptamer and analyte. Hence, fluorescence recovers at 545 nm for BPA and 805 nm for E2. Based on these findings, a dually amplified aptamer assay was constructed that covers the 0.01 to 100 ng mL−1 BPA concentration range, and the 0.1 to 100 ng mL−1 E2 concentration range. The detection limits are 7.8 pg mL−1 and 92 pg mL−1, respectively. This method was applied to the simultaneous determination of BPA and E2 in spiked samples of water, food, serum and urine.

Graphical abstract

Schematic presentation of novel quenching probes designed by tetrahedron complementary DNAs oriented self-assembled on the surface of black phosphorus/gold nanohybrids. Combined with aptamer-modified upconversion nanoparticles, a dual-amplification self-assembled fluorescence nanoprobe was constructed for simultaneous detection of BPA and E2.

Keywords

Black phosphorus nanohybrids Tetrahedral DNA Self-assembly Upconversion fluorescence Environmental estrogens (EEs) 

Notes

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 21477162), National Key Research and Development program of China (No. 2018YFC1603505), and the National Natural Science Foundation of China (No. 81773482, 81502847, 81602896) for funding this research.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2019_3266_MOESM1_ESM.doc (34.2 mb)
ESM 1 (DOC 34.1 mb)

References

  1. 1.
    Grill G, Li J, Khan U, Zhong Y, Lehner B, Nicell J, Ariwi J (2018) Estimating the eco-toxicological risk of estrogens in China's rivers using a high-resolution contaminant fate model. Water Res 145:707–720.  https://doi.org/10.1016/j.watres.2018.08.053 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang D, Zhu W, Yan S, Meng Z, Yan J, Teng M, Zhou Z (2018) Impaired lipid and glucose homeostasis in male mice offspring after combined exposure to low-dose bisphenol a and arsenic during the second half of gestation. Chemosphere 210:998–1005.  https://doi.org/10.1016/j.chemosphere.2018.07.094 CrossRefPubMedGoogle Scholar
  3. 3.
    Huang R, Liu Z, Yin H, Dang Z, Wu P, Zhu N, Lin Z (2018) Bisphenol a concentrations in human urine, human intakes across six continents, and annual trends of average intakes in adult and child populations worldwide: a thorough literature review. Sci Total Environ 626:971–981.  https://doi.org/10.1016/j.scitotenv.2018.01.144 CrossRefPubMedGoogle Scholar
  4. 4.
    Wassenaar PNH, Trasande L, Legler J (2017) Systematic review and meta-analysis of early-life exposure to bisphenol a and obesity-related outcomes in rodents. Environ Health Perspect 125(10):106001.  https://doi.org/10.1289/EHP1233 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kabir ER, Rahman MS, Rahman I (2015) A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol 40(1):241–258.  https://doi.org/10.1016/j.etap.2015.06.009 CrossRefPubMedGoogle Scholar
  6. 6.
    Xie Y, Yang Y, Tang C, Sheng H, Jiang Y, Han K, Ding L (2014) Estrogen combined with progesterone decreases cell proliferation and inhibits the expression of Bcl-2 via microRNA let-7a and miR-34b in ovarian cancer cells. Clin Transl Oncol 16(10):898–905.  https://doi.org/10.1007/s12094-014-1166-x CrossRefPubMedGoogle Scholar
  7. 7.
    Cruze L, Roark AM, Rolland G, Younas M, Stacy N, Guillette LJ Jr (2015) Endogenous and exogenous estrogens during embryonic development affect timing of hatch and growth in the American alligator (Alligator mississippiensis). Comp Biochem Physiol B Biochem Mol Biol 184:10–18.  https://doi.org/10.1016/j.cbpb.2015.02.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhao J, Gao J, Xue W, Di Z, Xing H, Lu Y, Li L (2018) Upconversion luminescence-activated DNA Nanodevice for ATP sensing in living cells. J Am Chem Soc 140(2):578–581.  https://doi.org/10.1021/jacs.7b11161 CrossRefPubMedGoogle Scholar
  9. 9.
    Chen H, He K, Li H, Zhang Y, Yao S (2018) Analyte-triggered cyclic autocatalytic oxidation amplification combined with an upconversion nanoparticle probe for fluorometric detection of copper (II). Mikrochim Acta 185(10):484.  https://doi.org/10.1007/s00604-018-3015-z CrossRefPubMedGoogle Scholar
  10. 10.
    Chen Z, Zhang C, Li X, Ma H, Wan C, Li K, Lin Y (2015) Aptasensor for electrochemical sensing of angiogenin based on electrode modified by cationic polyelectrolyte-functionalized graphene/gold nanoparticles composites. Biosens Bioelectron 65:232–237.  https://doi.org/10.1016/j.bios.2014.10.046 CrossRefPubMedGoogle Scholar
  11. 11.
    Lv J, Zhao S, Wu S, Wang Z (2017) Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-LR sensing. Biosens Bioelectron 90:203–209.  https://doi.org/10.1016/j.bios.2016.09.110 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang S, Cao X, Gao T, Wang X, Zou H, Zeng W (2018) A ratiometric upconversion nanoprobe for fluorometric turn-on detection of sulfite and bisulfite. Mikrochim Acta 185(4):218.  https://doi.org/10.1007/s00604-018-2757-y CrossRefPubMedGoogle Scholar
  13. 13.
    Wu S, Liu L, Duan N, Wang W, Yu Q, Wang Z (2018) A test strip for ochratoxin a based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mikrochim Acta 185(11):497.  https://doi.org/10.1007/s00604-018-3022-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Kumar V, Brent JR, Shorie M, Kaur H, Chadha G, Thomas AG, Sabherwal P (2016) Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl Mater Interfaces 8(35):22860–22868.  https://doi.org/10.1021/acsami.6b06488 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang Y, Wang Y, Zhu W, Wang J, Yue X, Liu W, Zhang D, Wang J (2017) Simultaneous colorimetric determination of bisphenol a and bisphenol S via a multi-level DNA circuit mediated by aptamers and gold nanoparticles. Microchim Acta 184(3):951–959.  https://doi.org/10.1007/s00604-017-2092-8 CrossRefGoogle Scholar
  16. 16.
    Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571.  https://doi.org/10.1038/srep07571 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Xiong J, Cui P, Chen X, Wang J, Parida K, Lin MF, Lee PS (2018) Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat Commun 9(1):4280.  https://doi.org/10.1038/s41467-018-06759-0 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Korolkov VV, Timokhin IG, Haubrichs R, Smith EF, Yang L, Yang S, Beton PH (2017) Supramolecular networks stabilise and functionalise black phosphorus. Nat Commun 8(1):1385.  https://doi.org/10.1038/s41467-017-01797-6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ou W, Byeon JH, Thapa RK, Ku SK, Yong CS, Kim JO (2018) Plug-and-play Nanorization of coarse black phosphorus for targeted chemo-photoimmunotherapy of colorectal Cancer. ACS Nano 12(10):10061–10074.  https://doi.org/10.1021/acsnano.8b04658 CrossRefPubMedGoogle Scholar
  20. 20.
    Song T, Chen H, Xu Q, Liu H, Wang YG, Xia Y (2018) Black phosphorus stabilizing Na2Ti3O7/C each other with an improved electrochemical property for sodium-ion storage. ACS Appl Mater Interfaces 10(43):37163–37171.  https://doi.org/10.1021/acsami.8b14971 CrossRefPubMedGoogle Scholar
  21. 21.
    Ren S, Li Y, Guo Q, Peng Y, Bai J, Ning B, Gao Z (2018) Turn-on fluorometric immunosensor for diethylstilbestrol based on the use of air-stable polydopamine-functionalized black phosphorus and upconversion nanoparticles. Microchim Acta 185(9):429.  https://doi.org/10.1007/s00604-018-2969-1. CrossRefGoogle Scholar
  22. 22.
    He L, Lu DQ, Liang H, Xie S, Luo C, Hu M, Tan W (2017) Fluorescence resonance energy transfer-based DNA tetrahedron Nanotweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano 11(4):4060–4066.  https://doi.org/10.1021/acsnano.7b00725 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yoo WK, Ryu BH, Kim KR, Wang Y, Le L, Lee JH, Doohun Kim T (2018) Modulating alpha-synuclein fibril formation using DNA tetrahedron nanostructures. Biochim Biophys Acta Gen Subj 1863(1):73–81.  https://doi.org/10.1016/j.bbagen.2018.09.025 CrossRefPubMedGoogle Scholar
  24. 24.
    Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Tan W (2017) Aptasensor with expanded nucleotide using DNA Nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 11(4):3943–3949.  https://doi.org/10.1021/acsnano.7b00373 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee EH, Lim HJ, Lee SD, Son A (2017) Highly sensitive detection of bisphenol a by NanoAptamer assay with truncated aptamer. ACS Appl Mater Interfaces 9(17):14889–14898.  https://doi.org/10.1021/acsami.7b02377 CrossRefPubMedGoogle Scholar
  26. 26.
    Huang W, Li J, Gao L, Wang Y, Liu S, Jiang M, Liu T, Wang Y (2016) The influence of structural isomerism on fluorescence and organic dye selective adsorption in two complexes based on flexible ligands. Dalton Trans 45(38):15060–15066.  https://doi.org/10.1039/c6dt02090a CrossRefPubMedGoogle Scholar
  27. 27.
    He M, Wang K, Wang J, Yu Y, He R (2017) A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol a. Anal Bioanal Chem 409(7):1797–1803.  https://doi.org/10.1007/s00216-016-0123-7 CrossRefPubMedGoogle Scholar
  28. 28.
    Beiranvand ZS, Abbasi AR, Dehdashtian S, Karimi Z, Azadbakht A (2017) Aptamer-based electrochemical biosensor by using au-Pt nanoparticles, carbon nanotubes and acriflavine platform. Anal Biochem 2(1):518–545.  https://doi.org/10.1016/j.ab.2016.10.001 CrossRefGoogle Scholar
  29. 29.
    Ni X, Xia B, Wang L, Ye J, Du G, Feng H, Wang W (2017) Fluorescent aptasensor for 17beta-estradiol determination based on gold nanoparticles quenching the fluorescence of rhodamine B. Anal Biochem 523:17–23.  https://doi.org/10.1016/j.ab.2017.01.021 CrossRefPubMedGoogle Scholar
  30. 30.
    Alsager OA, Kumar S, Zhu B, Travas-Sejdic J, McNatty KP, Hodgkiss JM (2015) Ultrasensitive colorimetric detection of 17β-estradiol: the effect of shortening DNA aptamer sequences. Anal Chem 87(8):4201–4209.  https://doi.org/10.1021/acs.analchem.5b00335 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food SafetyTianjin Institute of Environmental and Operational MedicineTianjinChina
  2. 2.State Key Laboratory of Food Science and Technology, School of Food Science and TechnologyJiangnan UniversityWuxiChina
  3. 3.The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional MaterialsShanghai Normal UniversityShanghaiChina

Personalised recommendations